[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Diagnosing the declining industry sponsorship in clinical research

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

By many measures, industry sponsorship is a crucial and even irreplaceable funding source for clinical research. This study aims to analyze the engagement of industry sponsorship in clinical research, which has seen a notable decline, from 43.61% in 2000 to 24.68% in 2020. To anatomy the characteristics of industry sponsored clinical trials and to diagnose its recent decline, 435,561 original records from ClinicalTrials.gov are analyzed to revisit the ever-changing role of industry sponsorship in clinical research, as well as its profound and far-reaching impacts. While the percentage of industry sponsorship in clinical trials has been decreasing in general throughout the last two decades, it remains the majority of funding sources for clinical research in specific areas around the Pacific Rim, but excluding the U.S. and China. Against the traditional wisdom that connects industry sponsorship to the late phases of clinical trials, it is observed that industry sponsorship shares a higher percentage than public sponsorship in and only in phase 1 clinical trials. Most significantly, data-driven results reveal that industry sponsorship contributes less to epidemic diseases than to non-communicable diseases. Recognizing this universal dilemma in the whole sector, the complementary roles of external collaboration and open innovation should be addressed to help facilitate R&D (research & development) decisions and hence improve investment returns in late phase clinical research. Analysis results remind policy-makers as well as related industry stakeholders of the need to further motivate the engagement of industry sponsorship in epidemic clinical research, especially during the post pandemic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-El-Enein, M., & Schneider, C. K. (2016). Deciphering the EU clinical trials regulation. Nature Biotechnology, 34(3), 231–233.

    Article  Google Scholar 

  • Adda, J., Decker, C., & Ottaviani, M. (2020). P-hacking in clinical trials and how incentives shape the distribution of results across phases. Proceedings of the National Academy of Sciences, 117(24), 13386–13392.

    Article  MathSciNet  Google Scholar 

  • Angell, M. (2008). Industry-sponsored clinical research: A broken system. JAMA, 300(9), 1069–1071.

    Article  Google Scholar 

  • Baronikova, S., Purvis, J., Southam, E., Beeso, J., Panayi, A., & Winchester, C. (2019). Commitments by the biopharmaceutical industry to clinical trial transparency: The evolving environment. BMJ Evidence-Based Medicine, 24(5), 177–184.

    Article  Google Scholar 

  • Bastian, H. (2006). They would say that, wouldn’t they?’ A reader’s guide to author and sponsor biases in clinical research. Journal of the Royal Society of Medicine, 99(12), 611–614.

    Google Scholar 

  • Bruzzi, P. (2008). Non-drug industry funded research. BMJ, 336(7634), 1–2.

    Article  Google Scholar 

  • Buscemi, N., Hartling, L., Vandermeer, B., Tjosvold, L., & Klassen, T. P. (2006). Single data extraction generated more errors than double data extraction in systematic reviews. Journal of Clinical Epidemiology., 59, 697–703.

    Article  Google Scholar 

  • Casassus, B. (2021). European law could boost clinical trials reporting. Science, 373(6552), 268.

    Article  Google Scholar 

  • Califf, R. M., Zarin, D. A., Kramer, J. M., Sherman, R. E., Aberle, L. H., & Tasneem, A. (2012). Characteristics of clinical trials registered in ClinicalTrials.gov, 2007–2010. JAMA, 307(17), 1838–1847.

    Article  Google Scholar 

  • Cooper, L., Lee, I., & Lechner, D. W. (2021). COVID-19 pandemic response varies by clinical trial sponsor type. Journal of Clinical and Translational Science, 5(1), e111.

    Article  Google Scholar 

  • Couzin-Frankel, J. (2015). Researchers seek clear reasons when clinical trials end early. Science, 349(6245), 222.

    Article  Google Scholar 

  • Daniel, G. W., Cazé, A., Romine, M. H., Audibert, C., Leff, J. S., & McClellan, M. B. (2015). Improving pharmaceutical innovation by building a more comprehensive database on drug development and use. Health Affairs, 34(2), 319–327.

    Article  Google Scholar 

  • Dilts, D. (2010). US cancer trials may go the way of the Oldsmobile. Nature Medicine, 16(6), 632.

    Article  Google Scholar 

  • Djulbegovic, B., Lacevic, M., Cantor, A., Fields, K. K., Bennett, C. L., Adams, J. R., Lyman, G. H., et al. (2000). The uncertainty principle and industry-sponsored research. The Lancet, 356(9230), 635–638.

    Article  Google Scholar 

  • Evans, J. A. (2010). Industry collaboration, scientific sharing, and the dissemination of knowledge. Social Studies of Science, 40(5), 757–791.

    Article  Google Scholar 

  • Glickman, et al. (2009). Ethical and scientific implications of the globalization of clinical research. New England Journal of Medicine, 360(8), 816–823.

    Article  Google Scholar 

  • Haeussler, C., & Assmus, A. (2021). Bridging the gap between invention and innovation: Increasing success rates in publicly and industry-funded clinical trials. Research Policy, 50(2), 104155.

    Article  Google Scholar 

  • Hauskeller, C., Baur, N., & Harrington, J. (2019). Standards, harmonization and cultural differences: Examining the implementation of a European Stem Cell Clinical Trial. Science as Culture, 28(2), 174–199.

    Article  Google Scholar 

  • Huang, J. (2021). Trends of pharmaceutical corporations’ external innovation strategies: An inverse sigmoid curve. Technology in Society, 67, 101785.

    Article  Google Scholar 

  • Huang, J. (2023). Drug licensing as evidence of evolution, diffusion and catch-up in East Asia. Nature Biotechnology, 41(2), 189–192.

    Article  Google Scholar 

  • Karassa, F. B., & Ioannidis, J. (2015). A transparent future for clinical trial reporting. Nature Reviews Rheumatology, 11(6), 324–326.

    Article  Google Scholar 

  • Karlberg, J. P. (2008). Globalization of sponsored clinical trials. Nature Reviews Drug Discovery, 7(5), 458.

    Article  Google Scholar 

  • Keating, P., & Cambrosio, A. (2009). Who’s minding the data? Data monitoring committees in clinical cancer trials. Sociology of Health & Illness, 31(3), 325–342.

    Article  Google Scholar 

  • Krimsky, S. (2019). Conflicts of interest in science: How corporate-funded academic research can threaten public health. Simon and Schuster.

    Google Scholar 

  • Lexchin, J., Bero, L. A., Djulbegovic, B., & Clark, O. (2003). Pharmaceutical industry sponsorship and research outcome and quality: Systematic review. BMJ, 326(7400), 1167–1170.

    Article  Google Scholar 

  • Lone, S., Elizabeth, H., & Taylor, R. J. (2018). Clinical research networks are key to accurate and timely assessment of pandemic clinical severity. The Lancet Global Health, 6(9), E956–E957.

    Article  Google Scholar 

  • Louet, S. (2004). UK to pursue contract clinical trials. Nature Biotechnology, 22(1), 5–7.

    Article  Google Scholar 

  • Lundh, A., Barbateskovic, M., Hróbjartsson, A., & Gøtzsche, P. C. (2010). Conflicts of interest at medical journals: The influence of industry-supported randomised trials on journal impact factors and revenue–cohort study. PLoS Medicine, 7(10), e1000354.

    Article  Google Scholar 

  • Lundh, A., Lexchin, J., Mintzes, B., Schroll, J. B., & Bero, L. (2017). Industry sponsorship and research outcome. Cochrane Database of Systematic Reviews, 2, MR000033.

    Google Scholar 

  • MacMahon, S., Perkovic, V., & Patel, A. (2013). Industry-sponsored clinical trials in emerging markets: Time to review the terms of engagement. JAMA, 310(9), 907–908.

    Article  Google Scholar 

  • Mason, C., McCall, M. J., Culme-Seymour, E. J., Suthasan, S., Edwards-Parton, S., Bonfiglio, G. A., & Reeve, B. C. (2012). The global cell therapy industry continues to rise during the second and third quarters of 2012. Cell Stem Cell, 11(6), 735–739.

    Article  Google Scholar 

  • Meldolesi, A. (2003). EU directive on clinical trials penalizes small sponsors. Nature Biotechnology, 21(8), 838–839.

    Article  Google Scholar 

  • Mello, M. M., & Joffe, S. (2007). Compact versus contract-Industry sponsors’ obligations to their research subjects. New England Journal of Medicine, 356(26), 2737.

    Article  Google Scholar 

  • Montaner, J. S., O’Shaughnessy, M. V., & Schechter, M. T. (2001). Industry-sponsored clinical research: A double-edged sword. The Lancet, 358(9296), 1893–1895.

    Article  Google Scholar 

  • Mullard, A. (2015). Crowdfunding clinical trials. Nature Reviews Drug Discovery, 14(9), 593–594.

    Google Scholar 

  • Nayak, R. K., Avorn, J., & Kesselheim, A. S. (2019). Public sector financial support for late stage discovery of new drugs in the United States: Cohort study. BMJ, 367, l5766.

    Article  Google Scholar 

  • Nejstgaard, C. H., Laursen, D. R. T., Lundh, A., & Hróbjartsson, A. (2023). Commercial funding and estimated intervention effects in randomized clinical trials: Systematic review of meta-epidemiological studies. Research Synthesis Methods, 14(2), 144–155.

    Article  Google Scholar 

  • Owens, P. K., Raddad, E., Miller, J. W., Stille, J. R., Olovich, K. G., Smith, N. V., Scherer, J. C., et al. (2015). A decade of innovation in pharmaceutical R&D: The Chorus model. Nature Reviews Drug Discovery, 14(1), 17–28.

    Article  Google Scholar 

  • Peck, R. W., Lendrem, D. W., Grant, I., Lendrem, B. C., & Isaacs, J. D. (2015). Why is it hard to terminate failing projects in pharmaceutical R&D? Nature Reviews Drug Discovery, 14(10), 663–664.

    Article  Google Scholar 

  • Rasmussen, K., Bero, L., Redberg, R., Gøtzsche, P. C., & Lundh, A. (2018). Collaboration between academics and industry in clinical trials: Cross sectional study of publications and survey of lead academic authors. BMJ, 363, k3654.

    Article  Google Scholar 

  • Ross, J. S., Gross, C. P., & Krumholz, H. M. (2012). Promoting transparency in pharmaceutical industry–sponsored research. American Journal of Public Health, 102(1), 72–80.

    Article  Google Scholar 

  • Salandra, R. (2018). Knowledge dissemination in clinical trials: Exploring influences of institutional support and type of innovation on selective reporting. Research Policy, 47(7), 1215–1228.

    Article  Google Scholar 

  • Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, 11(3), 191–200.

    Article  Google Scholar 

  • Schmidt, C. (2011). Debate re-ignites on contribution of public research to drug development. Nature Biotechnology, 29, 469–470.

    Article  Google Scholar 

  • Schulman, K. A., Seils, D. M., Timbie, J. W., Sugarman, J., Dame, L. A., Weinfurt, K. P., Califf, R. M., et al. (2002). A national survey of provisions in clinical-trial agreements between medical schools and industry sponsors. New England Journal of Medicine, 347(17), 1335–1341.

    Article  Google Scholar 

  • Sismondo, S. (2008). How pharmaceutical industry funding affects trial outcomes: Causal structures and responses. Social Science & Medicine, 66(9), 1909–1914.

    Article  Google Scholar 

  • Strom, B. L., Buyse, M., Hughes, J., & Knoppers, B. M. (2014). Data sharing, year 1—access to data from industry-sponsored clinical trials. New England Journal of Medicine, 371(22), 2052–2054.

    Article  Google Scholar 

  • Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., & Vandenbroucke, J. P. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet, 370(9596), 1453–1457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 58 KB)

Appendices

Appendix 1: Statistics of clinical trials reported at clinicaltrials.gov by sponsor type

  

Total

Industry

Public

Public: University

Public: Hospital

Location

World

438,655

133,640

305,015

187,437

84,723

Africa

15,594

3334

12,260

9927

1327

Central America

3774

2541

1233

377

183

East Asia

54,536

20,503

34,033

23,463

23,518

––Japan

7258

6151

1107

824

237

Europe

124,974

42,063

82,911

48,950

30,056

Middle East

22,057

6512

15,545

8905

2848

North America

179,163

68,064

111,099

67,565

14,134

––Canada

26,370

12,550

13,820

8190

2698

––Mexico

4,601

3,231

1,370

224

366

––United States

161,162

63,204

97,958

59,916

11,402

North Asia

7575

6104

1471

592

123

Pacifica

10,090

7869

2221

1037

504

South America

13,326

5989

7337

3509

1806

South Asia

7698

2967

4731

2305

773

Southeast Asia

9020

4075

4945

3151

1583

Start Date

2000

1417

618

799

585

214

2001

1961

976

985

744

241

2002

3240

1736

1504

1089

415

2003

4694

2409

2285

1685

600

2004

6417

3250

3167

2296

871

2005

8328

3995

4333

3071

1262

2006

10,024

4976

5048

3657

1391

2007

11,826

5652

6174

4439

1735

2008

13,770

6258

7512

5316

2196

2009

15,173

6484

8689

6103

2586

2010

16,184

6482

9702

6734

2968

2011

17,167

6621

10,546

7209

3337

2012

17,998

6400

11,598

7887

3711

2013

18,678

6305

12,373

8375

3998

2014

21,091

6846

14,245

9656

4589

2015

22,879

6950

15,929

10,799

5130

2016

25,035

7086

17,949

12,058

5891

2017

26,556

7066

19,490

13,251

6239

2018

28,463

7387

21,076

14,439

6637

2019

30,094

7500

22,594

15,520

7074

2020

31,071

7669

23,402

15,587

7815

2021

34,480

9171

25,309

17,390

7919

2022

31,713

8231

23,482

16,176

7306

Phase

Phase 4

22,739

2619

20,120

13,295

6868

Phase 3

24,455

5502

18,953

10,455

5332

Phase 2

73,842

33,946

39,896

22,852

10,351

Phase 1

57,507

33,341

24,166

14,092

5371

Indication

NCD

210,742

69,172

141,570

81,402

42,854

-CVD

54,015

15,769

38,246

23,858

12,660

-Cancer

94,554

31,907

62,647

32,515

17,790

-CRD

43,202

14,556

28,646

16,766

9165

-Diabetes

18,971

6940

12,031

8263

3239

Indication

Epidemics

12,507

3364

9143

5031

2751

-COVID-19

8737

1921

6816

3805

1986

-MERS

54

20

34

20

6

-H1N1

250

127

123

65

31

-SARS

3466

1296

2170

1141

728

  1. Note 1. Source: United States National Library of Medicine, ClinicalTrials.gov, clinicaltrials.gov/ct2/home [Accessed on December 8, 2022 and April 18, 2023]
  2. Note 2: Public sponsors refer to ‘NIH’, ‘Other U.S. Federal agency’, and ‘All Others (Individuals, Universities, Organizations)’ under the ‘Funder Type’ filter. University sponsors or hospital sponsors refer to clinical trials with the keyword ‘university’ or ‘hospital’ under the ‘Sponsor / Collaborator’ filter.
  3. Note 3: NCD Non-Communicable Diseases, CVD Cardio-Vascular Diseases, CRD Chronic Respiratory Diseases

Appendix 2: Shares of major sponsor types of clinical trials reported at ClinicalTrials.gov

  

Total (%)

Industry (%)

Public (%)

Public: University (%)

Public: Hospital (%)

Location

World

100.00

30.47

69.53

42.73

19.31

Africa

100.00

21.38

78.62

63.66

8.51

Central America

100.00

67.33

32.67

9.99

4.85

East Asia

100.00

37.60

62.40

43.02

43.12

-Japan

100.00

84.75

15.25

11.35

3.27

Europe

100.00

33.66

66.34

39.17

24.05

Middle East

100.00

29.52

70.48

40.37

12.91

North America

100.00

37.99

62.01

37.71

7.89

-Canada

100.00

47.59

52.41

31.06

10.23

-Mexico

100.00

70.22

29.78

4.87

7.95

-United States

100.00

39.22

60.78

37.18

7.07

North Asia

100.00

80.58

19.42

7.82

1.62

Pacifica

100.00

77.99

22.01

10.28

5.00

South America

100.00

44.94

55.06

26.33

13.55

South Asia

100.00

38.54

61.46

29.94

10.04

Southeast Asia

100.00

45.18

54.82

34.93

17.55

Start Date

2000

100.00

43.61

56.39

41.28

15.10

2001

100.00

49.77

50.23

37.94

12.29

2002

100.00

53.58

46.42

33.61

12.81

2003

100.00

51.32

48.68

35.90

12.78

2004

100.00

50.65

49.35

35.78

13.57

2005

100.00

47.97

52.03

36.88

15.15

2006

100.00

49.64

50.36

36.48

13.88

2007

100.00

47.79

52.21

37.54

14.67

2008

100.00

45.45

54.55

38.61

15.95

2009

100.00

42.73

57.27

40.22

17.04

2010

100.00

40.05

59.95

41.61

18.34

2011

100.00

38.57

61.43

41.99

19.44

2012

100.00

35.56

64.44

43.82

20.62

2013

100.00

33.76

66.24

44.84

21.40

2014

100.00

32.46

67.54

45.78

21.76

2015

100.00

30.38

69.62

47.20

22.42

2016

100.00

28.30

71.70

48.16

23.53

2017

100.00

26.61

73.39

49.90

23.49

2018

100.00

25.95

74.05

50.73

23.32

2019

100.00

24.92

75.08

51.57

23.51

2020

100.00

24.68

75.32

50.17

25.15

2021

100.00

26.60

73.40

50.44

22.97

2022

100.00

25.95

74.05

51.01

23.04

Phase

Phase 4

100.00

11.52

88.48

58.47

30.20

Phase 3

100.00

22.50

77.50

42.75

21.80

Phase 2

100.00

45.97

54.03

30.95

14.02

Phase 1

100.00

57.98

42.02

24.50

9.34

Indication

NCD

100.00

32.82

67.18

38.63

20.33

-CVD

100.00

29.19

70.81

44.17

23.44

-Cancers

100.00

33.74

66.26

34.39

18.81

-CRD

100.00

33.69

66.31

38.81

21.21

-Diabetes

100.00

36.58

63.42

43.56

17.07

Indication

Epidemics

100.00

26.90

73.10

40.23

22.00

-COVID-19

100.00

21.99

78.01

43.55

22.73

-MERS

100.00

37.04

62.96

37.04

11.11

-H1N1

100.00

50.80

49.20

26.00

12.40

-SARS

100.00

37.39

62.61

32.92

21.00

  1. Note 1. Source: United States National Library of Medicine, ClinicalTrials.gov, clinicaltrials.gov/ct2/home [Accessed on December 8, 2022 and April 18, 2023]
  2. Note 2: NCD Non-Communicable Diseases, CVD Cardio-Vascular Diseases, CRD Chronic Respiratory Diseases

Appendix 3: Declining big pharma sponsors and industry sponsors in clinical trials

 

All sponsors

Industry sponsors

Big pharma sponsors

2000

2288

618

149

2001

2897

976

302

2002

4113

1736

582

2003

5651

2409

881

2004

7455

3250

1230

2005

9333

3995

1351

2006

11,306

4976

1700

2007

12,938

5652

1782

2008

14,907

6257

2006

2009

16,263

6484

1964

2010

17,394

6481

1818

2011

18,287

6619

1694

2012

19,329

6400

1511

2013

20,200

6303

1352

2014

22,456

6845

1296

2015

24,096

6948

1393

2016

26,160

7085

1240

2017

27,477

7065

1271

2018

29,388

7384

1240

2019

30,844

7487

1164

2020

31,791

7655

1220

2021

35,020

9129

1298

2022

32,090

8271

1084

  1. Note 1. Source: United States National Library of Medicine, ClinicalTrials.gov, clinicaltrials.gov/ct2/home [Accessed on April 18, 2023]
  2. Note 2: Among the top 20 pharmaceutical corporations by market capitalization worldwide, 10 pharms with longer histories and fewer name changes are selected and covered in the scope of statistics, i.e., Janssen, Lilly, Merck, Roche, Pfizer, AstraZeneca, Novartis, Sanofi, Bayer, and MSD

Appendix 4: Mixed effects logistic regression estimates of key factors’ effects on the number of industry sponsors

Type III tests of fixed effects

Source

Numerator df

Denominator df

F

Sig

Intercept

1

1454

186.272

 < 0.001

Phase

1

1453

76.971

 < 0.001

Year

1

1453

188.874

 < 0.001

Phase * Year

1

1453

77.649

 < 0.001

Estimates of fixed effects

Parameter

Estimate

SE

df

t

Sig

95% confidence interval

Intercept

 − 49,791.030

3648.189

1454

 − 13.648

 < 0.001

 − 56,947.305

 − 42,634.755

Phase

11,684.882

1331.869

1453

8.773

 < 0.001

9072.291

14,297.474

Year

24.927

1.814

1453

13.743

 < 0.001

21.369

28.484

Phase * Year

 − 5.836

0.662

1453

 − 8.812

 < 0.001

 − 7.135

 − 4.537

Estimates of covariance parameters

Parameter

Estimate

SE

Wald Z

Sig

95% confidence interval

Residual

35,511.136

1317.488

26.954

 < 0.001

33,020.557

38,189.568

Intercept [subject = Region_A]

83,514.254

30,636.041

2.726

0.006

40,692.013

171,400.483

  1. Note 1: Model here is mixed effects logistic regression with the number of industry sponsor as the dependent variable, clinical phase and starting year as fixed-effect covariates, and geographical region as a random-effect factor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J. Diagnosing the declining industry sponsorship in clinical research. Scientometrics 129, 663–679 (2024). https://doi.org/10.1007/s11192-023-04887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04887-z

Keywords

Navigation