[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Eugene Garfield: from the metrics of science to the science of metrics

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Quantity and quality are Aristotelian categories. Ever since Galileo, the defining feature of Science is the accurate measure of quantity, e.g., time, length and mass, to begin with. Length and mass are size dependent. Quality remained an elusive category as it is a size-independent feature. It was Archimedes who first brought a revolution in physics by defining density as a size-independent attribute. A similar revolution was effected in the measurement of science when Eugene Garfield introduced the concept of the citation as a unit of measurement and from this, separated quantity (number of publications) from quality (impact). In this article, we interpret impact as a thermodynamic mean instead of a simplistic arithmetic mean. This opens up rich analogies with the conservation laws of mechanics and thermodynamic features linking disorder and unevenness to entropy. Also as in physics, considerations of dimensional homogeneity play a defining role. Without Garfield’s bold initiative, all this will have eluded us for some time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas, A. M. (2011). Analysis of generalized impact factor and indices of journals. Journal of Information Processing Systems, 7, 341–354.

    Article  Google Scholar 

  • Abbas, A. M. (2012). Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: An improvement over existing models. PLoS ONE, 7, e33699.

    Article  Google Scholar 

  • Bensman, S. J. (2013). Eugene Garfield, Francis Narin, and PageRank: The Theoretical Bases of the Google Search Engine. arXiv:1312.3872 [cs.IR].

  • Bergstrom, C. T. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College & Research Libraries News, 68(5), 314–316.

    Article  Google Scholar 

  • Bergstrom, C. T., West, J. D., & Wiseman, M. A. (2008). The Eigenfactor metrics. Journal of Neuroscience, 28(45), 11433–11434.

    Article  Google Scholar 

  • Bollen, J., Rodriguez, M. A., & Van de Sompel, H. (2006). Journal Status. Scientometrics, 69(3), 669–687.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1989). World flash on basic research. Scientometrics, 15(1–2), 13–20.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173.

    Article  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Article  Google Scholar 

  • Campbell, S. R. (2004). On the concepts of quantity and quality in the history of western thought. In Philosophical Studies in Education SIG at the American Educational Research Association Annual Conference, San Diego, California.

  • Cronin, B. (1984). The citation process: The role and significance of citations in scientific communication. London: Taylor Graham.

    Google Scholar 

  • Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? Journal of the American Society for Information Science and Technology, 59(13), 2186–2188.

    Article  Google Scholar 

  • De Bellis, N. (2009). Bibliometrics and citation analysis: From the Science citation index to cybermetrics. Metuchen: Scarecrow Press Incorporated.

    Google Scholar 

  • De Visscher, A. (2011). What does the g-index really measure? Journal of the American Society for Information Science and Technology, 62(11), 2290–2293.

    Article  Google Scholar 

  • Egghe, L. (2006a). An improvement of the h-index: The g-index. ISSI Newsletter, 2(1), 8–9.

    MathSciNet  Google Scholar 

  • Egghe, L. (2006b). Theory and practice of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Franceschini, F., & Maisano, D. (2010). Criticism on the hg-index. Scientometrics, 82(2), 391–400.

    Article  Google Scholar 

  • Garfield, E. (1955). Citation indexes to science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

    Article  Google Scholar 

  • Glänzel, W. (2006). On the h-index—A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2), 315–321.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s research output. Proceedings of National Academy of Sciences (PNAS), 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Leydesdorff, L., & Bornmann, L. (2011). Integrated impact indicators (I3) compared with impact factors (IFs): An alternative design with policy implications. Journal of the American Society for Information Science and Technology, 62(11), 2133–2146.

    Article  Google Scholar 

  • Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12(5), 297–312.

    Article  Google Scholar 

  • Prathap, G. (2010). Is there a place for a mock h-index? Scientometrics, 84(1), 153–165.

    Article  Google Scholar 

  • Prathap, G. (2011a). The Energy–Exergy–Entropy (or EEE) sequences in bibliometric assessment. Scientometrics, 87(3), 515–524.

    Article  Google Scholar 

  • Prathap, G. (2011b). Quasity, when quantity has a quality all of its own—Toward a theory of performance. Scientometrics, 88(2), 555–562.

    Article  Google Scholar 

  • Price, D. J. S. (1963). Little science, big science. New York: Columbia University Press. ISBN 0-231-08562-1.

    Google Scholar 

  • Price, D. J. S. (1965). Networks of scientific papers. Science, 149(3683), 510–515.

    Article  Google Scholar 

  • Ramanujacharyulu, C. (1964). Analysis of preferential experiments. Psychometrika, 29(3), 257–261.

    Article  MATH  Google Scholar 

  • Schubert, A. (2009). Transzlációs tudománymetria. Informatio Medicata Budapest.

  • SCImago. (2007). SJRSCImago Journal & Country Rank. Retrieved July 21, 2015, from http://www.scimagojr.com.

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.

    Article  MATH  Google Scholar 

  • Vinkler, P. (1988). Weighted impact of publications and relative contribution score. Two new indicators characterizing publication of countries. Scientometrics, 14(1–2), 161–163.

    Article  Google Scholar 

  • Yan, E., & Ding, Y. (2010). Weighted citation: An indicator of an article’s prestige. Journal of the American Society for Information Science and Technology, 61(8), 1635–1643.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangan Prathap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathap, G. Eugene Garfield: from the metrics of science to the science of metrics. Scientometrics 114, 637–650 (2018). https://doi.org/10.1007/s11192-017-2525-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2525-5

Keywords

Navigation