Abstract
In the solar energy field, scientists publish numerous scientific articles every year. Some are highly-cited, while others may not even be cited. In this paper, we introduce two underlying scientific properties of a paper to explain this paper’s highly-cited or un-cited probability: scientific relatedness and intellectual base. We utilize two main network techniques, knowledge element coupling network (concurrence-based) and paper citation network (citation-based) analyses, to measure scientific relatedness and intellectual base, respectively. What’s more, we conduct descriptive analyses of un-cited and highly-cited papers at the country, organization and journal levels. Then we map knowledge element co-occurrence networks and paper citation networks to compare the network characteristics of un-cited and highly-cited papers. Further, we use article data in the solar energy field between 2004 and 2010 to examine our hypotheses. Findings from Ordered Logit Models indicate that when the scientific relatedness of a paper is high, this paper is more likely to be un-cited, whereas less likely to be highly-cited. The paper with higher intellectual base has a higher possibility to be highly-cited, whereas a low possibility to be un-cited. Overall, this paper provides important insights into the determinant factors of a paper’s citation levels, which is helpful for researchers maximizing the scientific impact of their efforts.
Similar content being viewed by others
References
Ahmed, T., Johnson, B., Oppenheim, C., & Peck, C. (2004). Highly cited old papers and the reasons why they continue to be cited. Part II., The 1953 Watson and Crick article on the structure of DNA. Scientometrics, 61(2), 147–156.
Akhavan, P., Ebrahim, N. A., Fetrati, M. A., & Pezeshkan, A. (2016). Major trends in knowledge management research: A bibliometric study. Scientometrics. doi:10.1007/s11192-016-1938-x.
Amemiya, T. (1981). Qualitative response models: A survey. Journal of Economic Literature, 19(4), 1483–1536.
Asheim, B. T., & Coenen, L. (2005). Knowledge bases and regional innovation systems: Comparing Nordic clusters. Research Policy, 34(8), 1173–1190.
Bornmann, L., de Moya Anegón, F., & Leydesdorff, L. (2010). Do scientific advancements lean on the shoulders of giants? A bibliometric investigation of the Ortega hypothesis. PLoS ONE, 5(10), e13327.
Bornmann, L., Mutz, R., Marx, W., Schier, H., & Daniel, H. D. (2011). A multilevel modelling approach to investigating the predictive validity of editorial decisions: Do the editors of a high profile journal select manuscripts that are highly cited after publication? Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(4), 857–879.
Bornmann, L., Schier, H., Marx, W., & Daniel, H.-D. (2012). What factors determine citation counts of publications in chemistry besides their quality? Journal of Informetrics, 6(1), 11–18.
Burrell, Q. L. (2003). Predicting future citation behavior. Journal of the American Society for Information Science and Technology, 54(5), 372–378.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.
Cheon, Y.-J., Choi, S. K., Kim, J., & Kwak, K. T. (2015). Antecedents of relational inertia and information sharing in SNS usage: The moderating role of structural autonomy. Technological Forecasting and Social Change, 95, 32–47.
Du, H., Li, N., Brown, M. A., Peng, Y., & Shuai, Y. (2014). A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renewable Energy, 66, 696–706.
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342.
Friedman, D. D., Landes, W. M., & Posner, R. A. (1991). Some economics of trade secret law. The Journal of Economic Perspectives, 5(1), 61–72.
Garfield, E. (1979). Cirution indexing. New York: Wiley.
Guan, J. C., & Liu, N. (2015). Invention profiles and uneven growth in the field of emerging nano-energy. Energy Policy, 76, 146–157.
Guan, J. C., & Yan, Y. (2016). Technological proximity and recombinative innovation in the alternative energy field. Research Policy. doi:10.1016/j.respol.2016.05.002.
Guan, J. C., Zhang, J. J., & Yan, Y. (2015). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559.
HaCohen-Kerner, Y. (2003). Automatic extraction of keywords from abstracts. In V. Palade, R. J. Howlett, & L. Jain (Eds.), Knowledge-based intelligent information and engineering systems: Proceedings of the 7th international conference, KES 2003, Oxford, UK, September 2003, Part I (pp. 843–849). Berlin, Heidelberg: Springer.
Hagstrom, W. O. (1965). The scientific community. New York: Basic books.
Hammarfelt, B. (2010). Interdisciplinarity and the intellectual base of literature studies: Citation analysis of highly cited monographs. Scientometrics, 86(3), 705–725.
Karsai, M., Perra, N., & Vespignani, A. (2014). Time varying networks and the weakness of strong ties. Scientific Reports. doi:10.1038/srep04001.
Kazi, P., Patwardhan, M., & Joglekar, P. (2016). Towards a new perspective on context based citation index of research articles. Scientometrics, 107(1), 103–121.
Koschützki, D., & Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulation and Systems Biology, 2, 193.
Lee, B., & Jeong, Y.-I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3–19.
Letchford, A., Preis, T., & Moat, H. S. (2016). The advantage of simple paper abstracts. Journal of Informetrics, 10(1), 1–8.
Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15735.
Lewison, G., Thornicroft, G., Szmukler, G., & Tansella, M. (2007). Fair assessment of the merits of psychiatric research. The British Journal of Psychiatry, 190(4), 314–318.
Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s Cosine versus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.
Li, X., Chen, H., Huang, Z., & Roco, M. C. (2007). Patent citation network in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(3), 337–352.
Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.
MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-cited influences. Journal of the American Society for Information Science and Technology, 61(1), 1–12.
McClellan, J. E. (2003). Specialist control: The publications committee of the Académie Royale des Sciences (Paris) 1700–1793. Transactions of the American Philosophical Society, 93(3), i-134.
Merton, R. K. (1979). The sociology of science: An episodic memoir. Carbondale: Southern Illinois University Press.
Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis, 79(4), 606–623.
Muñoz-Leiva, F., Viedma-del-Jesús, M. I., Sánchez-Fernández, J., & López-Herrera, A. G. (2012). An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Quality & Quantity, 46(4), 1077–1095.
Narin, F. (1976). Evaluative bibliometrics: The use of publication and citation analysis in the evaluation of scientific activity. Washington, DC: Computer Horizons.
O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.
Oppenheim, C., & Renn, S. P. (1978). Highly cited old papers and the reasons why they continue to be cited. Journal of the American Society for Information Science, 29(5), 225–231.
Persson, O. (1994). The intellectual base and research fronts of “jasis” 1986–1990. Journal of the American Society for Information Science, 45(1), 31–38.
Price, D. J. (1970). Citation measures of hard science, soft science, technology, and nonscience. Communication among scientists and engineers. Lexington: D.C. Heath and Company.
Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3), 380–385.
Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 4(2), 131–134.
Sanz-Casado, E., Garcia-Zorita, J. C., Serrano-López, A. E., Larsen, B., & Ingwersen, P. (2013). Renewable energy research 1995–2009: A case study of wind power research in EU, Spain, Germany and Denmark. Scientometrics, 95(1), 197–224.
Schubert, A., & Glänzel, W. (1983). Statistical reliability of comparisons based on the citation impact of scientific publications. Scientometrics, 5(1), 59–73.
Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. BMJ: British Medical Journal, 314(7079), 498–502.
Simard, C., & West, J. (2006). Knowledge networks and the geographic locus of innovation. Open innovation: Researching a new paradigm. Oxford: Oxford University Press.
Small, H. (1981). The relationship of information science to the social sciences: A co-citation analysis. Information Processing and Management, 17(1), 39–50.
Tahamtan, I., Afshar, A. S., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.
Takeda, Y., & Kajikawa, Y. (2008). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics, 78(3), 543–558.
Tijssen, R., Visser, M., & van Leeuwen, T. (2002). Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference? Scientometrics, 54(3), 381–397.
Timilsina, G. R., Kurdgelashvili, L., & Narbel, P. A. (2012). Solar energy: Markets, economics and policies. Renewable and Sustainable Energy Reviews, 16(1), 449–465.
Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35–67.
Wang, J. (2016). Knowledge creation in collaboration networks: Effects of tie configuration. Research Policy, 45(1), 68–80.
Wang, C., Rodan, S., Fruin, M., & Xu, X. (2014). Knowledge networks, collaboration networks, and exploratory innovation. Academy of Management Journal, 57(2), 484–514.
Weitzman, M. L. (1998). Recombinant growth. Quarterly Journal of Economics, 113(2), 331–360.
Yamashita, Y., & Yoshinaga, D. (2014). Influence of researchers’ international mobilities on publication: A comparison of highly cited and uncited papers. Scientometrics, 101(2), 1475–1489.
Zhang, J. J., Yan, Y., & Guan, J. C. (2015). Scientific relatedness in solar energy: A comparative study between the USA and China. Scientometrics, 102(2), 1595–1613.
Acknowledgments
This study is supported by Grants from National Natural Science Foundation of China (Nos. 71373254 and 71540034).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, J., Guan, J. Scientific relatedness and intellectual base: a citation analysis of un-cited and highly-cited papers in the solar energy field. Scientometrics 110, 141–162 (2017). https://doi.org/10.1007/s11192-016-2155-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-016-2155-3