[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simulations of opinion changes in scientific communities

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

We present a computer model of opinion changes in a scientific community. The study takes into account two mechanisms of opinion formation for individual scientists: influence of coworkers with whom there is direct interaction and cumulative influence of the subject literature. We analyze the evolution of relative popularity of different competing theories, depending on their accuracy in describing observed phenomena and on current social support of the theory. We include such aspects as finite lifetime of publication impact and tendency to ‘defend’ one’s own opinions, especially if they were already published. A special class of publications, delivering crucial observational or experimental data, which may revolutionize the scientific worldview is considered. The goal of the model is to discover which conditions lead to quick domination of one theory over others, or, conversely, in which situations one may expect several explanations to co-exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, E. (2006). Indicators of failed information epidemics in the scientific journal literature: A publication analysis of Polywater and Cold Nuclear Fusion. Scientometrics, 66(3), 451–466.

    Article  MathSciNet  Google Scholar 

  • Anderegg, W. R. L., Prall, J. W., Harold, J., & Schneider, S. H. (2010). Expert credibility in climate change. Proceedings of the National Academy of Sciences, 107(27), 12,107–12,109.

    Article  Google Scholar 

  • Aspect, A., Grangier, P., & Roger, G. (1981). Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 47, 460–463.

    Article  Google Scholar 

  • Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: A new violation of Bell’s inequalities. Physical Review Letters, 49, 91–94.

    Article  Google Scholar 

  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  • Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195–200.

    Google Scholar 

  • Bettencourt, L. M. A., Cintrón-Arias, A., Kaiser, D. I., & Castillo-Chávez, C. (2006). The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A Statistical Mechanics and its Applications, 364, 513–536.

    Article  Google Scholar 

  • Börner, K., Maru, J., & Goldstone, R. (2004). The simultaneous evolution of author and paper networks. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1), 5266.

    Article  Google Scholar 

  • Brannon, L., Tagler, M., & Eagly, A. (2007). The moderating role of attitude strength in selective exposure to information. Journal of Experimental Social Psychology, 43(4), 611–617.

    Article  Google Scholar 

  • Bruckner, E., Ebeling, W., & Scharnhorst, A. (1990). The application of evolution models in scientometrics. Scientometrics, 18(1), 21–41.

    Article  Google Scholar 

  • Cantú, A., & Ausloos, M. (2009). Organizational and dynamical aspects of a small network with two distinct communities: Neo-creationists vs. evolution defenders. Scientometrics, 80(2), 457–472.

    Article  Google Scholar 

  • Carroll, S. M. (2004). Why is the universe accelerating? In W. L. Freedman (Ed.), Measuring and modeling the universe. Carnegie Observatories Astrophysics Series (Vol. 2, p. 235). Cambridge: Cambridge University Press.

  • Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81, 591–646.

    Article  Google Scholar 

  • Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880–884.

    Article  Google Scholar 

  • Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 3, 87–98.

    Article  Google Scholar 

  • Dufour, C., & Tabah, A. (1998). Information epidemics and the transformation of science. In CAIS/ACSI’98: Information science at the dawn of the next millennium. Proceedings of the 26th annual conference of the Canadian Association for Information Science, Association canadienne des sciences de l’information, 3–5 June 1998 (p. 143). Ottawa, ON: Universite d’Ottawa.

  • Einstein, A. (1917). Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber Preuss Akad Wiss (pp. 142–152).

  • Einstein, A. (1931). Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsber Preuss Akad Wiss (pp. 235–237).

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  MATH  Google Scholar 

  • Elga, A. (2007). Reflection and disagreement. Noûs, 41(3), 478–502.

    Article  Google Scholar 

  • Freire, O., Jr. (2004). The historical roots of “foundations of quantum physics” as a field of research (1950–1970). Foundations of Physics, 34(11), 1741–1760.

    Article  MathSciNet  Google Scholar 

  • Freire, O., Jr. (2006). Philosophy enters the optics laboratory: Bell’s theorem and its first experimental tests (1965–1982). Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 37(4), 577–616.

    Article  MathSciNet  Google Scholar 

  • Galam, S. (2008). Sociophysics: A review of Galam models. International Journal of Modern Physics C, 19(3), 409–440. http://arxiv.org/pdf/0803.1800.

    Google Scholar 

  • Galam, S., Gefen, Y., & Shapir, Y. (1982). Sociophysics: A new approach of sociological collective behaviour. I. Mean-behaviour description of a strike. Journal of Mathematical Sociology, 9, 1–13.

    Article  MATH  Google Scholar 

  • Gilbert, N. (1997). A simulation of the structure of academic science. Sociological Research Online, 2(2). http://socresonline.org.uk/2/2/3.html.

  • Goffman, W. (1966). Mathematical approach to the spread of scientific ideas—the history of mast cell research. Nature, 212(5061), 449–452.

    Article  Google Scholar 

  • Goldman, A. (2001). Experts: Which ones should you trust? Philosophy and Phenomenological Research, 63(1), 85–110.

    Article  Google Scholar 

  • Hołyst, J., Kacperski, K., & Schweitzer, F. (2001). Social impact models of opinion dynamics. Annual Review of Computational Physics, 20, 531–535.

    Google Scholar 

  • Huntington, P., Nicholas, D., Jamali, H., & Tenopir, C. (2006). Article decay in the digital environment: An analysis of usage of OhioLINK by date of publication, employing deep log methods. Journal of the American Society for Information Science and Technology, 57(13), 1840–1851.

    Article  Google Scholar 

  • Kacperski, K., & Hołyst, J. (1999). Opinion formation model with strong leader and external impact: A mean field approach. Physica A, 269, 511–526.

    Article  Google Scholar 

  • Kacperski, K., & Hołyst, J. (2000). Phase transitions as a persistent feature of groups with leaders in models of opinion formation. Physica A, 287, 631–643.

    Article  Google Scholar 

  • Knobloch-Westerwick, S., & Meng, J. (2009). Looking the other way: Selective exposure to attitude-consistent and counterattitudinal political information. Communication Research, 36(3), 426–448.

    Article  Google Scholar 

  • Kochen, M., & Blaivas, A. (1981). A model for the growth of mathematical specialties. Scientometrics, 3(4), 265–273.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems . American Journal of Physics, 69, 655–701.

    Article  Google Scholar 

  • Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673.

    Article  Google Scholar 

  • Lewenstein, M., Nowak A., & Latané, B. (1992). Statistical mechanics of social impact. Physical Review A, 45, 763–776.

    Article  MathSciNet  Google Scholar 

  • Lotka, A. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences, 16, 317–323.

    Google Scholar 

  • Martins, A. C. R. (2010). Modeling scientific agents for a better science. Advances in Complex Systems (ACS), 13(04), 519–533.

    Article  MathSciNet  Google Scholar 

  • Martinson, B., Anderson, M., & De Vries, R. (2005). Scientists behaving badly. Nature, 435(7043), 737–738.

    Article  Google Scholar 

  • Menskii, M. B. (2000). Quantum mechanics: New experiments, new applications, and new formulations of old questions. Uspekhi Fizicheskikh Nauk, 43, 585–600.

    Article  Google Scholar 

  • Newman, M., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 36,122.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016,131

    Google Scholar 

  • Newman, M. E. J. (2001b). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98, 5955–5956.

    Article  Google Scholar 

  • Nicholas, D., Huntington, P., Dobrowolski, T., Rowlands, I., Jamali, H. R., & Polydoratou, P. (2005). Revisiting ‘obsolescence’ and journal article ‘decay’ through usage data: An analysis of digital journal use by year of publication. Information Processing and Management, 41(6), 1441–1461.

    Article  Google Scholar 

  • Nowak, A., & Lewenstein, M. (1996). Modeling social change with cellular automata. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), Modelling and simulation in the social sciences from a philosophy of science point of view (pp. 249–285). Dordrecht: Kluwer.

  • Perlmutter, S., Aldering, G., Deustua, S., Fabbro, S., Goldhaber, G., Groom, D. E., et al. (1997). Cosmology from type IA supernovae: Measurements, calibration techniques, and implications. Bulletin of the American Astronomical Society, 29, 1351.

    Google Scholar 

  • Pigliucci, M., & Kaplan, J. (2000). The fall and rise of Dr Pangloss: Adaptationism and the Spandrels paper 20 years later. Trends in Ecology and Evolution, 15, 66–70.

    Article  Google Scholar 

  • Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116, 1009–1038.

    Article  Google Scholar 

  • Simkin, M. V., & Roychowdhury, V. P. (2003). Read before you cite. Complex Systems, 14, 269–274.

    Google Scholar 

  • Simkin, M. V., & Roychowdhury, V. P. (2005a). Copied citations create renowned papers? Annals of Improbable Research, 11(1), 24–27.

    Article  Google Scholar 

  • Simkin, M. V., & Roychowdhury, V. P. (2005b). Stochastic modeling of citation slips. Scientometrics, 62(3), 367–384.

    Article  Google Scholar 

  • Simkin, M. V., & Roychowdhury, V. P. (2006). An introduction to the theory of citing. Significance, 3, 179–181.

    Article  MathSciNet  Google Scholar 

  • Smolin, L. (2006). The trouble with physics: The rise of string theory, the fall of science and what comes next. London: Penguin Books Ltd.

    MATH  Google Scholar 

  • Sobkowicz, P. (2009). Studies of opinion stability for small dynamic networks with opportunistic agents. International Journal of Modern Physics C (IJMPC), 20(10), 1645–1662.

    Article  MATH  Google Scholar 

  • Sobkowicz, P. (2010). Effect of leader’s strategy on opinion formation in networked societies with local interactions. International Journal of Modern Physics C (IJMPC), 21(6), 839–852.

    Article  MATH  Google Scholar 

  • Sterman, J. D. (1985). The growth of knowledge: Testing a theory of scientific revolutions with a formal model. Technological Forecasting and Social Change, 28(2), 93–122.

    Article  Google Scholar 

  • Sutton, A., Duval, S., Tweedie, R., Abrams, K., & Jones, D. (2000). Empirical assessment of effect of publication bias on meta-analyses. British Medical Journal, 320(7249), 1574.

    Article  Google Scholar 

  • Sznajd-Weron, K., & Sznajd, J. (2000). Opinion evolution in closed community. International Journal of Modern Physics C, 11, 1157–1166.

    Article  Google Scholar 

  • Tabah, A. (1996). Information epidemics and the growth of physics. PhD thesis, Graduate School of Library and Information Studies, McGill University, Montreal, Canada.

  • Thurner, S., & Hanel, R. (2010). Peer-review in a world with rational scientists: Toward selection of the average. Arxiv preprint arXiv:10084324. http://arxiv.org/pdf/1008.4324.

  • Wiltshire, D. L. (2008a). Cosmological equivalence principle and the weak-field limit. Physical Review D, 78, 084,032.

    Article  MathSciNet  Google Scholar 

  • Wiltshire, D. L. (2008b). Gravitational energy and cosmic acceleration. International Journal of Modern Physics D, 17, 641.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Sobkowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobkowicz, P. Simulations of opinion changes in scientific communities. Scientometrics 87, 233–250 (2011). https://doi.org/10.1007/s11192-011-0339-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0339-4

Keywords

Navigation