Abstract
Air water-harvesting systems are considered important technologies for overcoming the global water scarcity issue. Various relative humidity and cost considerations make sorbent-based air water-harvesting systems the most desirable technologies among current air water-harvesting systems. The limited availability of commercial instruments for air–water harvesting systems indicates a lack of fundamental studies on this field. In this regard, this review paper discusses and presents progress in the fields of sorbent materials and condensation and system design and future considerations in accelerating the commercialization of these technologies. Particularly, bio-inspired composition and design, mix design systems, use of renewable energy sources, modification of available sorbent materials according to functionalization, and composites are factors that require further attention. Fundamental studies of sorbent stability and life cycle, water absorbency, adsorption kinetics, heat and mass transport, regeneration condition, water-collecting surface design, and system design are essential.
Similar content being viewed by others
References
Ahmed MA, Zubair SM, Abido MA, Bahaidarah HM (2018) An innovative closed-air closed-desiccant HDH system to extract water from the air: a case for zero-brine discharge system. Desalination 445:236–248. https://doi.org/10.1016/j.desal.2018.07.024
Al-Abbasi O, Ayhan T, Sarac B (2019) Experimental investigation and CFD modeling to assess the performance of solar air humidifier. Int J Heat Technol 37(1):357–364
Alayli Y, Hadji NE, Leblond J (1987) A new process for the extraction of water from air. Desalination 67:227–229. https://doi.org/10.1016/0011-9164(87)90246-3
Aristov YI, Tokarev MM, Gordeeva LG, Snytnikov VN, Parmon VN (1999) New composite sorbents for solar-driven technology of fresh water production from the atmosphere. Sol Energy 66(2):165–168. https://doi.org/10.1016/S0038-092X(98)00110-8
Asim N et al (2020) Prospect of aerogels as desiccant materials: possibilities and challenges. J Porous Med (under review)
Asim N, Emdadi Z, Mohammad M, Yarmo MA, Sopian K (2015) Agricultural solid wastes for green desiccant applications: an overview of research achievements, opportunities and perspectives. J Clean Prod 91:26–35. https://doi.org/10.1016/j.jclepro.2014.12.015
Asim N et al (2019a) Key factors of desiccant-based cooling systems: materials. Appl Therm Eng 159:113946. https://doi.org/10.1016/j.applthermaleng.2019.113946
Asim N et al (2019b) Biomass and industrial wastes as resource materials for aerogel preparation: opportunities, challenges, and research directions. Ind Eng Chem Res 58(38):17621–17645. https://doi.org/10.1021/acs.iecr.9b02661
AtlantisSolar (2020) Atmospheric water generator. http://www.atlantissolar.com/atlantis_h2o_elite.html Accessed 22 Sept 2020
Bhushan B (2020) Design of water harvesting towers and projections for water collection from fog and condensation. Philos Trans R Soc A Math Phys Eng Sci 378(2167):20190440. https://doi.org/10.1098/rsta.2019.0440
Boretti A, Rosa L (2019) Reassessing the projections of the World Water Development Report. Clean Water 2(1):15. https://doi.org/10.1038/s41545-019-0039-9
Brown PS, Bhushan B (2016) Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philos Trans R Soc A Math Phys Eng Sci 374(2073):20160135. https://doi.org/10.1098/rsta.2016.0135
Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B, Farrusseng D (2014a) Structure–property relationships of water adsorption in metal–organic frameworks. New J Chem 38(7):3102–3111. https://doi.org/10.1039/C4NJ00076E
Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014b) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617. https://doi.org/10.1039/C4CS00078A
Chaitanya B, Bahadur V, Thakur AD, Raj R (2018) Biomass-gasification-based atmospheric water harvesting in India. Energy 165:610–621. https://doi.org/10.1016/j.energy.2018.09.183
Chen Y et al (2020) A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist. Nano Energy 73:104765. https://doi.org/10.1016/j.nanoen.2020.104765
Choi JI, Chun H, Lah MS (2018) Zirconium-formate macrocycles and supercage: molecular packing versus MOF-like network for water vapor sorption. J Am Chem Soc 140(34):10915–10920. https://doi.org/10.1021/jacs.8b06757
Comanns P (2018) Passive water collection with the integument: mechanisms and their biomimetic potential. J Exp Biol 221(10):jeb153130. https://doi.org/10.1242/jeb.153130
Dai L, Yao Y, Jiang F, Yang X, Zhou X, Xiong P (2017) Sorption and regeneration performance of novel solid desiccant based on PVA-LiCl electrospun nanofibrous membrane. Polym Testing 64:242–249. https://doi.org/10.1016/j.polymertesting.2017.10.013
Dai X et al (2018) Hydrophilic directional slippery rough surfaces for water harvesting. Sci Adv 4(3):eaaq0919. https://doi.org/10.1126/sciadv.aaq0919
EcoloBlue (2020) EcoloBlue water from air. https://www.ecoloblue.com/ Accessed 22 September 2020
Edmund A (1938) Method for gaining water out of the atmosphere. United States Patent
Elashmawy M (2019) Experimental study on water extraction from atmospheric air using tubular solar still. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119322
Entezari A, Ejeian M, Wang R (2019a) Modifying water sorption properties with polymer additives for atmospheric water harvesting applications. Appl Therm Eng 161:114109. https://doi.org/10.1016/j.applthermaleng.2019.114109
Entezari A, Ejeian M, Wang RZ (2019b) Extraordinary air water harvesting performance with three phase sorption. Mater Today Energy 13:362–373. https://doi.org/10.1016/j.mtener.2019.07.001
Fang Y et al (2020) In-situ microwave hydrothermal synthesis and performance of chromium-substituted aluminophosphate zeolite coating on aluminum foil. Microporous Mesoporous Mater 294:109900. https://doi.org/10.1016/j.micromeso.2019.109900
Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM (2018) Practical water production from desert air. Sci Adv 4(6):eaat3198. https://doi.org/10.1126/sciadv.aat3198
Feng J, Zhong L, Guo Z (2020) Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chem Eng J 388:124283. https://doi.org/10.1016/j.cej.2020.124283
Fujiki J, Yogo K (2019) Water adsorption on nitrogen-doped carbons for adsorption heat pump/desiccant cooling: experimental and density functional theory calculation studies. Appl Surf Sci 492:776–784. https://doi.org/10.1016/j.apsusc.2019.06.267
Furukawa H et al (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136(11):4369–4381. https://doi.org/10.1021/ja500330a
Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22(4):541–556. https://doi.org/10.1016/S0960-1481(00)00112-9
Gandhidasan P, Abualhamayel HI (2010) Investigation of humidity harvest as an alternative water source in the Kingdom of Saudi Arabia. Water Environ J 24(4):282–292. https://doi.org/10.1111/j.1747-6593.2009.00189.x
Gordeeva LG, Tokarev MM, Parmon VN, Aristov YI (1998) Selective water sorbents for multiple application, 6. Freshwater production from the atmosphere. React Kinet Catal Lett 65(1):153–159. https://doi.org/10.1007/bf02475329
Gordeeva LG, Restuccia G, Freni A, Aristov YI (2002) Water sorption on composites “LiBr in a porous carbon”. Fuel Process Technol 79(3):225–231. https://doi.org/10.1016/S0378-3820(02)00186-8
Gordeeva LG, Solovyeva MV, Sapienza A, Aristov YI (2020) Potable water extraction from the atmosphere: potential of MOFs. Renew Energy 148:72–80. https://doi.org/10.1016/j.renene.2019.12.003
Gou X, Guo Z (2020) Hybrid Hydrophilic-Hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir 36(1):64–73. https://doi.org/10.1021/acs.langmuir.9b03224
Gurera D, Bhushan B (2019) Optimization of bioinspired conical surfaces for water collection from fog. J Colloid Interface Sci 551:26–38. https://doi.org/10.1016/j.jcis.2019.05.015
Gürsoy M, Harris MT, Carletto A, Yaprak AE, Karaman M, Badyal JPS (2017) Bioinspired asymmetric-anisotropic (directional) fog harvesting based on the arid climate plant Eremopyrum orientale. Colloids Surf A 529:959–965. https://doi.org/10.1016/j.colsurfa.2017.06.065
Hamed AM (2000) Absorption–regeneration cycle for production of water from air-theoretical approach. Renew Energy 19(4):625–635. https://doi.org/10.1016/S0960-1481(99)00068-3
Hamed AM, Aly AA, Zeidan E-SB (2011) Application of solar energy for recovery of water from atmospheric air in climatic zones of Saudi Arabia
Hanikel N, Prévot MS, Yaghi OM (2020) MOF water harvesters. Nat Nanotechnol 15(5):348–355. https://doi.org/10.1038/s41565-020-0673-x
Hao C et al (2016) Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications. Small 12(14):1825–1839. https://doi.org/10.1002/smll.201503060
Heng X, Xiang M, Lu Z, Luo C (2014) Branched ZnO wire structures for water collection inspired by cacti. ACS Appl Mater Interfaces 6(11):8032–8041. https://doi.org/10.1021/am4053267
Hu R et al (2019) A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. J Mater Chem A 7(1):124–132. https://doi.org/10.1039/C8TA10615K
Ji JG, Wang RZ, Li LX (2007) New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination 212(1):176–182. https://doi.org/10.1016/j.desal.2006.10.008
Jiang F, Dai L, Yao Y (2018) Polyamide 6-LiCl nanofibrous membrane as low-temperature regenerative desiccant with improved stability. Nanotechnology 29(18):185702. https://doi.org/10.1088/1361-6528/aab00d
Kabeel AE (2006) Application of sandy bed solar collector system for water extraction from air. Int J Energy Res 30(6):381–394. https://doi.org/10.1002/er.1155
Kabeel AE (2007) Water production from air using multi-shelves solar glass pyramid system. Renew Energy 32(1):157–172. https://doi.org/10.1016/j.renene.2006.01.015
Kabeel AE (2015) Water recovery from atmospheric air using wick desiccant solar still. Environ Eng Manag J EEMJ 14(10):2365–2372. https://doi.org/10.30638/eemj.2015.252
Kabeel AE, Abdulaziz M, El-Said EMS (2016) Solar-based atmospheric water generator utilisation of a fresh water recovery: a numerical study. Int J Ambient Energy 37(1):68–75. https://doi.org/10.1080/01430750.2014.882864
Kallenberger PA, Fröba M (2018) Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun Chem 1(1):28. https://doi.org/10.1038/s42004-018-0028-9
Kalmutzki MJ, Diercks CS, Yaghi OM (2018) Metal-organic frameworks for water harvesting from air. Adv Mater 30(37):1704304. https://doi.org/10.1002/adma.201704304
Kim G-T, Gim S-J, Cho S-M, Koratkar N, Oh I-K (2014) Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. Adv Mater 26(30):5166–5172. https://doi.org/10.1002/adma.201401149
Kim K-M, Oh H-T, Lim S-J, Ho K, Park Y, Lee C-H (2016) Adsorption equilibria of water vapor on Zeolite 3A, Zeolite 13X, and dealuminated Y Zeolite. J Chem Eng Data 61(4):1547–1554. https://doi.org/10.1021/acs.jced.5b00927
Kim H et al (2017) Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356(6336):430–434. https://doi.org/10.1126/science.aam8743
Kim H et al (2018) Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun 9(1):1191. https://doi.org/10.1038/s41467-018-03162-7
Kim S, Park H, Choi H (2019) Maneuvering the ordered mesoporosity of electrospun silica nanofibers for water harvesting. Microporous Mesoporous Mater 281:23–31. https://doi.org/10.1016/j.micromeso.2019.02.037
Knez Ž, Novak Z (2001) Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels. J Chem Eng Data 46(4):858–860. https://doi.org/10.1021/je000201i
Krajnc A, Varlec J, Mazaj M, Ristić A, Logar NZ, Mali G (2017) Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv Energy Mater 7(11):1601815. https://doi.org/10.1002/aenm.201601815
Kumar M, Yadav A (2015a) Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air. J Renew Sustain Energy 7(3):033122. https://doi.org/10.1063/1.4922142
Kumar M, Yadav A (2015b) Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material “CaCl2/saw wood”. Desalination 367:216–222. https://doi.org/10.1016/j.desal.2015.04.009
Kumar M, Yadav A (2016a) Comparative study of solar-powered water production from atmospheric air using different desiccant materials. Int J Sustain Eng 9(6):390–400. https://doi.org/10.1080/19397038.2016.1200692
Kumar M, Yadav A (2016b) Solar-driven technology for freshwater production from atmospheric air by using the composite desiccant material “CaCl2/floral foam”. Environ Dev Sustain 18(4):1151–1165. https://doi.org/10.1007/s10668-015-9693-3
Kumar M, Yadav A (2017) Composite desiccant material “CaCl2/Vermiculite/Saw wood”: a new material for fresh water production from atmospheric air. Appl Water Sci 7(5):2103–2111. https://doi.org/10.1007/s13201-016-0406-3
Kumar M, Yadav A, Mehla N (2019) Water generation from atmospheric air by using different composite desiccant materials. Int J Ambient Energy 40(4):343–349. https://doi.org/10.1080/01430750.2017.1392350
LaPotin A, Kim H, Rao SR, Wang EN (2019) Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc Chem Res 52(6):1588–1597. https://doi.org/10.1021/acs.accounts.9b00062
Lempesis N, Janka A, Gnatiuk O, van Eijndhoven SJL, Koopmans RJ (2020) Predicting bio-inspired candidate surfaces with superomniphobic characteristics. Surf Topogr Metrol Prop 8(2):025021. https://doi.org/10.1088/2051-672x/ab9419
Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55. https://doi.org/10.1039/C6TA07984A
Li R, Shi Y, Alsaedi M, Wu M, Shi L, Wang P (2018a) Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ Sci Technol 52(19):11367–11377. https://doi.org/10.1021/acs.est.8b02852
Li R, Shi Y, Shi L, Alsaedi M, Wang P (2018b) Harvesting water from air: using anhydrous salt with sunlight. Environ Sci Technol 52(9):5398–5406. https://doi.org/10.1021/acs.est.7b06373
Li R, Shi Y, Wu M, Hong S, Wang P (2020) Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67:104255. https://doi.org/10.1016/j.nanoen.2019.104255
Liu W et al (2019) An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection. Nanoscale 11(18):8940–8949. https://doi.org/10.1039/C8NR10003A
Lu J et al (2019) Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting. Langmuir 35(9):3562–3567. https://doi.org/10.1021/acs.langmuir.8b04295
Magrini A, Cattani L, Cartesegna M, Magnani L (2017) Water production from air conditioning systems: some evaluations about a sustainable use of resources. Sustainability 9(8):1309
Mahmood A et al (2020) Nature-inspired design of conical array for continuous and efficient fog collection application. Colloid Interface Sci Commun 37:100283. https://doi.org/10.1016/j.colcom.2020.100283
Moazzam P, Tavassoli H, Razmjou A, Warkiani ME, Asadnia M (2018) Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination 429:111–118. https://doi.org/10.1016/j.desal.2017.12.023
Mohamed MH, William GE, Fatouh M (2017) Solar energy utilization in water production from humid air. Sol Energy 148:98–109. https://doi.org/10.1016/j.solener.2017.03.066
Nandakumar DK, Ravi SK, Zhang Y, Guo N, Zhang C, Tan SC (2018) A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ Sci 11(8):2179–2187. https://doi.org/10.1039/C8EE00902C
Nandakumar DK, Zhang Y, Ravi SK, Guo N, Zhang C, Tan SC (2019) Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv Mater 31(10):1806730. https://doi.org/10.1002/adma.201806730
Nations U (2018) World water development report 2018. https://www.unwater.org/publications/world-water-development-report-2018/
Nemani SK et al (2018) Surface modification of polymers: methods and applications. Adv Mater Interfaces 5(24):1801247. https://doi.org/10.1002/admi.201801247
P’yanova LG, Kornienko NV, Astashina SO (2019) Influence of the physicochemical properties of carbon black of different grades on moisture absorption. AIP Conf Proc 2143(1):020040. https://doi.org/10.1063/1.5122939
Pan T, Yang K, Han Y (2020) Recent progress of atmospheric water harvesting using metal-organic frameworks. Chem Res Chin Univ 36(1):33–40. https://doi.org/10.1007/s40242-020-9093-6
Park JK, Kim S (2019) Three-dimensionally structured flexible fog harvesting surfaces inspired by namib desert beetles. Micromachines 10(3):201
Park K-C et al (2016) Condensation on slippery asymmetric bumps. Nature 531(7592):78–82. https://doi.org/10.1038/nature16956
Permyakova A et al (2017) Design of salt–metal organic framework composites for seasonal heat storage applications. J Mater Chem A 5(25):12889–12898. https://doi.org/10.1039/C7TA03069J
Qadir NU, Said SAM, Mansour RB, Mezghani K, Ul-Hamid A (2016) Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Trans 45(39):15621–15633. https://doi.org/10.1039/C6DT02640K
Qi H et al (2019) An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption. Adv Mater 31(43):1903378. https://doi.org/10.1002/adma.201903378
Rainmaker (2020) Rainmaker. https://rainmakerww.com/technology-air-to-water/ Accessed 22 Sept 2020
Rajamani M, Mishra VR, Maliyekkal SM (2017) Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant. Chem Eng J 323:171–179. https://doi.org/10.1016/j.cej.2017.04.084
Rieth AJ, Yang S, Wang EN, Dincă M (2017) Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent Sci 3(6):668–672. https://doi.org/10.1021/acscentsci.7b00186
Rosi NL et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129. https://doi.org/10.1126/science.1083440
Salehi AA, Ghannadi-Maragheh M, Torab-Mostaedi M, Torkaman R, Asadollahzadeh M (2019) A review on the water-energy nexus for drinking water production from humid air. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109627
Sanchez C, Jeremias F, Ernst S-J, Henninger SK (2017) Synthesis, functionalization and evaluation of ethylene-bridged PMOs as adsorbents for sorption dehumidification and cooling systems. Microporous Mesoporous Mater 244:151–157. https://doi.org/10.1016/j.micromeso.2017.02.058
Setyawan H, Yuwana M, Balgis R (2015) PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems. Microporous Mesoporous Mater 218:95–100. https://doi.org/10.1016/j.micromeso.2015.07.009
Sharma V, Yiannacou K, Karjalainen M, Lahtonen K, Valden M, Sariola V (2019) Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport. Nanoscale Adv 1(10):4025–4040. https://doi.org/10.1039/C9NA00405J
Silva MP et al (2019) Water vapor harvesting by a (P)TSA process with MIL-125(Ti)_NH2 as adsorbent. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116336
Sirohia GK, Dai X (2019) Designing air-independent slippery rough surfaces for condensation. Int J Heat Mass Transf 140:777–785. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.035
Solís-Chaves JS, Rocha-Osorio CM, Murari ALL, Lira VM, Sguarezi Filho AJ (2018) Extracting potable water from humid air plus electric wind generation: a possible application for a Brazilian prototype. Renew Energy 121:102–115. https://doi.org/10.1016/j.renene.2017.12.039
Srivastava S, Yadav A (2018a) Extraction of water particles from atmospheric air through a Scheffler reflector using different solid desiccants. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1517667
Srivastava S, Yadav A (2018b) Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Sol Energy 169:302–315. https://doi.org/10.1016/j.solener.2018.03.089
Su Y et al (2019) Smart stretchable janus membranes with tunable collection rate for fog harvesting. Adv Mater Interfaces 6(22):1901465. https://doi.org/10.1002/admi.201901465
Sultan M, El-Sharkawy II, Miyazaki T, Saha BB, Koyama S (2015) An overview of solid desiccant dehumidification and air conditioning systems. Renew Sustain Energy Rev 46:16–29. https://doi.org/10.1016/j.rser.2015.02.038
Sultan M, Miyazaki T, Koyama S, Khan ZM (2018) Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications. Adsorpt Sci Technol 36(1–2):311–326. https://doi.org/10.1177/0263617417692338
Talaat MA, Awad MM, Zeidan EB, Hamed AM (2018) Solar-powered portable apparatus for extracting water from air using desiccant solution. Renew Energy 119:662–674. https://doi.org/10.1016/j.renene.2017.12.050
Tang S, Pi H, Zhang Y, Wu J, Zhang X (2019) Novel janus fibrous membranes with enhanced directional water vapor transmission. Appl Sci 9(16):3302
Tianhang Y, Beibei W, Songjing L (2015) Design and thermodynamic research on microfluidic-atmospheric water generator 123–128
Towsif Abtab SM et al (2018) Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4(1):94–105. https://doi.org/10.1016/j.chempr.2017.11.005
Trapani F, Polyzoidis A, Loebbecke S, Piscopo CG (2016) On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater 230:20–24. https://doi.org/10.1016/j.micromeso.2016.04.040
Tso CY, Chao CYH (2012) Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int J Refrig 35(6):1626–1638. https://doi.org/10.1016/j.ijrefrig.2012.05.007
Tsujiguchi T, Osaka Y, Kumita M, Kodama A (2019) Adsorption–desorption behavior of water vapor and heat-flow analysis of FAM-Z01-coated heat exchanger. Int J Refrig 105:3–10. https://doi.org/10.1016/j.ijrefrig.2019.03.011
Tu R, Hwang Y (2019) Performance analyses of a new system for water harvesting from moist air that combines multi-stage desiccant wheels and vapor compression cycles. Energy Convers Manag 198:111811. https://doi.org/10.1016/j.enconman.2019.111811
Tu Y, Wang R, Zhang Y, Wang J (2018) Progress and expectation of atmospheric water harvesting. Joule 2(8):1452–1475. https://doi.org/10.1016/j.joule.2018.07.015
Vivekh P, Kumja M, Bui DT, Chua KJ (2018) Recent developments in solid desiccant coated heat exchangers—a review. Appl Energy 229:778–803. https://doi.org/10.1016/j.apenergy.2018.08.041
Vivekh P, Bui DT, Wong Y, Kumja M, Chua KJ (2019) Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification. Appl Energy 237:733–750. https://doi.org/10.1016/j.apenergy.2019.01.018
Vivekh P, Bui DT, Islam MR, Zaw K, Chua KJ (2020) Experimental performance evaluation of desiccant coated heat exchangers from a combined first and second law of thermodynamics perspective. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.112518
Wang Y et al (2016) Biomimetic water-collecting fabric with light-induced superhydrophilic bumps. ACS Appl Mater Interfaces 8(5):2950–2960. https://doi.org/10.1021/acsami.5b08941
Wang JY, Liu JY, Wang RZ, Wang LW (2017a) Experimental research of composite solid sorbents for fresh water production driven by solar energy. Appl Therm Eng 121:941–950. https://doi.org/10.1016/j.applthermaleng.2017.04.161
Wang JY, Wang RZ, Wang LW, Liu JY (2017b) A high efficient semi-open system for fresh water production from atmosphere. Energy 138:542–551. https://doi.org/10.1016/j.energy.2017.07.106
Wang JY, Wang RZ, Tu YD, Wang LW (2018a) Universal scalable sorption-based atmosphere water harvesting. Energy 165:387–395. https://doi.org/10.1016/j.energy.2018.09.106
Wang Z, Li Y, Li S, Guo J, Zhang S (2018b) Janus porous membrane with conical nanoneedle channel for rapid unidirectional water transport. Chem Commun 54(78):10954–10957. https://doi.org/10.1039/C8CC05642K
Wang C et al (2019) Porous high-valence metal-organic framework featuring open coordination sites for effective water adsorption. Inorg Chem 58(5):3058–3064. https://doi.org/10.1021/acs.inorgchem.8b03042
Wang J et al (2020a) Water harvesting from the atmosphere in arid areas with manganese dioxide. Environ Sci Technol Lett 7(1):48–53. https://doi.org/10.1021/acs.estlett.9b00713
Wang X, Zeng J, Yu X, Liang C, Zhang Y (2020b) Beetle-like droplet-jumping superamphiphobic coatings for enhancing fog collection of sheet arrays. RSC Adv 10(1):282–288. https://doi.org/10.1039/C9RA09329J
William GE, Hassan M, Fatouh M (2014) Water production by using solar energy water recovery from atmospheric air
William GE, Mohamed MH, Fatouh M (2015) Desiccant system for water production from humid air using solar energy. Energy 90:1707–1720. https://doi.org/10.1016/j.energy.2015.06.125
Wu T et al (2010) Enhancing the stability of metal–organic frameworks in humid air by incorporating water repellent functional groups. Chem Commun 46(33):6120–6122. https://doi.org/10.1039/C0CC01170C
Wu J, Zhou H, Wang H, Shao H, Yan G, Lin T (2019) Novel water harvesting fibrous membranes with directional water transport capability. Adv Mater Interfaces 6(5):1801529. https://doi.org/10.1002/admi.201801529
Xiao J et al (2013) S/O-functionalities on modified carbon materials governing adsorption of water vapor. J Phys Chem C 117(44):23057–23065. https://doi.org/10.1021/jp408716e
Xie L-H, Xu M-M, Liu X-M, Zhao M-J, Li J-R (2020) Hydrophobic metal-organic frameworks: assessment, construction, and diverse applications. Adv Sci. https://doi.org/10.1002/advs.201901758
XPRIZE (2018) Grand prize winner in $1.75 M water abundance XPRIZE announced at XPRIZE visioneering 2018. https://www.xprize.org/articles/waxp-grand-prize-winner
Xu W, Yaghi OM (2020) Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 6(8):1348–1354. https://doi.org/10.1021/acscentsci.0c00678
Xu J et al (2020) Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew Chem Int Ed. https://doi.org/10.1002/anie.201915170
Yan J et al (2015) Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl Therm Eng 84:118–125. https://doi.org/10.1016/j.applthermaleng.2015.03.040
Yang Y, Rana D, Lan CQ (2015) Development of solid super desiccants based on a polymeric superabsorbent hydrogel composite. RSC Adv 5(73):59583–59590. https://doi.org/10.1039/C5RA04346H
Yang F, Zhang H, Original L (2016) Experimental investigation of adsorption properties of double-pipe adsorption bed for water sorption from air. Chem Ind Eng Progress CIEP 35(1):48–52
Yao H, Zhang P, Huang Y, Cheng H, Li C, Qu L (2019) Highly efficient clean water production from contaminated air with a wide humidity range. Adv Mater. https://doi.org/10.1002/adma.201905875
Ye H, Yuan Z, Li S, Zhang L (2014) Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system. Appl Therm Eng 62(2):690–696. https://doi.org/10.1016/j.applthermaleng.2013.10.035
Zhang J-P, Zhang F-S (2018) A new approach for blending waste plastics processing: superabsorbent resin synthesis. J Clean Prod 197:501–510. https://doi.org/10.1016/j.jclepro.2018.06.222
Zhang Y, Zhong L, Guo Z (2020) A hybrid stainless-steel mesh with nano-array structure applied for efficient fog harvesting by tuning wetting. Chem Lett 49(1):79–82. https://doi.org/10.1246/cl.190799
Zhao F, Zhou X, Liu Y, Shi Y, Dai Y, Yu G (2019) Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv Mater 31(10):1806446. https://doi.org/10.1002/adma.201806446
Zheng X, Ge TS, Wang RZ (2014) Recent progress on desiccant materials for solid desiccant cooling systems. Energy 74:280–294. https://doi.org/10.1016/j.energy.2014.07.027
Zheng X, Wang RZ, Ge TS, Hu LM (2015) Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems. Energy 93:88–94. https://doi.org/10.1016/j.energy.2015.09.024
Zheng X, Lin Z, Xu BY (2019) Thermal conductivity and sorption performance of nano-silver powder/FAPO-34 composite fin. Appl Therm Eng 160:114055. https://doi.org/10.1016/j.applthermaleng.2019.114055
Zhong L, Feng J, Guo Z (2019) An alternating nanoscale (hydrophilic–hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. J Mater Chem A 7(14):8405–8413. https://doi.org/10.1039/C9TA01906E
Zhou H, Guo Z (2019) Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications. J Mater Chem A 7(21):12921–12950. https://doi.org/10.1039/C9TA02682G
Zhu H, Huang Y, Lou X, Xia F (2019) Beetle-inspired wettable materials: from fabrications to applications. Mater Today Nano 6:100034. https://doi.org/10.1016/j.mtnano.2019.100034
Acknowledgment
This study was partially supported by the Universiti Kebangsaan Malaysia’s Grants (GUP-2018-129 and DIP-2015-028).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Asim, N., Badiei, M., Alghoul, M.A. et al. Sorbent-based air water-harvesting systems: progress, limitation, and consideration. Rev Environ Sci Biotechnol 20, 257–279 (2021). https://doi.org/10.1007/s11157-020-09558-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11157-020-09558-6