[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Log-concavity of the overpartition function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove that the overpartition function \( \overline{p}(n)\) is log-concave for all \( n\ge 2 \). The proof is based on Sills-Rademacher-type series for \( \overline{p}(n)\) and inspired by DeSalvo and Pak’s proof for the partition function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeSalvo, S., Pak, I.: Log-concavity of the Partition Function. (2013)

  2. Hardy, G.H., Ramanujan, S.: Asymptotic formulaæ in combinatory analysis. Proc. Lond. Math. Soc. 2(1), 75–115 (1918)

    Article  MATH  Google Scholar 

  3. Lehmer, D.H.: On the series for the partition function. Trans. Amer. Math. Soc. 43(2), 271–295 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rademacher, H.: On the partition function p(n). Proc. Lond. Math. Soc. 2(1), 241–254 (1938)

    Article  MATH  Google Scholar 

  5. Sills, A.V.: A Rademacher type formula for partitions and overpartitions. Int. J. Math. Math. Sci. 2010, 21 (2010). doi:10.1155/2010/630458

  6. Zuckerman, H.S.: On the coefficients of certain modular forms belonging to subgroups of the modular group. Trans. Am. Math. Soc 45(2), 298–321 (1939)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful for useful advice and guidance from Professor Bringmann, Dr. Krauel, Dr. Li, Dr. Mertens, and Dr. Rolen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Engel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, B. Log-concavity of the overpartition function. Ramanujan J 43, 229–241 (2017). https://doi.org/10.1007/s11139-015-9762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9762-0

Keywords

Mathematics Subject Classification

Navigation