[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Martingales associated with functions of Markov and finite variation processes

  • Published:
Queueing Systems Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Andersen, L.N., Asmussen, S., Aurzada, F., Glynn, P., Maejima, M., Pihlsgård, M., Simon, T.: Lévy Matters V - Lecture Notes in Mathematics 2149. Springer (2015)

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  3. Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, Singapore (2010)

    Book  Google Scholar 

  4. Asmussen, S., Avram, F., Pistorius, M.R.: Russian and American put options under exponential phase-type Lévy models. Stoch. Processes Their Appl. 109, 79–111 (2004)

    Article  Google Scholar 

  5. Asmussen, S., Kella, O.: A multi-dimensional martingale for Markov additive processes and its applications. Adv. Appl. Probab. 32, 376–393 (2000)

    Article  Google Scholar 

  6. Asmussen, S., Pihlsgård, M.: Loss rates for Lévy processes with two reflecting barriers. Math. Oper. Res. 32, 308–321 (2007)

    Article  Google Scholar 

  7. Boxma, O., Kella, O.: Decomposition results for stochastic storage processes and queues with alternating Lévy inputs. Queueing Syst. 77, 97–112 (2014)

    Article  Google Scholar 

  8. Boxma, O., Perry, D., Stadje, W.: Clearing models for M/G/1 queues. Queueing Syst. 38, 287–306 (2001)

    Article  Google Scholar 

  9. Dębicki, K., Mandjes, M.: Queues and Lévy Fluctuation Theory. Springer, Berlin (2015)

    Book  Google Scholar 

  10. Frostig, E.: The expected time to ruin in a risk process with constant barrier via martingales. Insur. Math. Econ. 37, 216–228 (2005)

    Article  Google Scholar 

  11. Kella, O., Whitt, W.: Useful martingales for stochastic storage processes with Lévy input. J. Appl. Probab. 29, 396–403 (1992)

    Article  Google Scholar 

  12. Kella, O., Yor, M.: Unifying the Dynkin and Lebesgue-Stieltjes formulae. J. Appl. Probab. 54, 252–266 (2017)

    Article  Google Scholar 

  13. Kyprianou, A.E.: Fluctuations of Lévy Processes with Applications: Introductory Lectures. Springer, Berlin (2006)

    Google Scholar 

  14. Kyprianou, A.E.: Gerber-Shiu Risk Theory. Springer, Berlin (2013)

    Book  Google Scholar 

  15. Kyprianou, A.E., Palmowski, Z.: A martingale review of some fluctuation theory for spectrally negative Lévy processes. Séminaire de Probabilité XXXVII - Lecture Notes in Mathematics. vol. 1857, pp. 16–29, (2004)

  16. Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8, 767–785 (2002)

    Google Scholar 

  17. Perry, D., Stadje, W., Yosef, R.: Annuities with controlled random interest rates. Insur. Math. Econ. 32, 245–253 (2003)

    Article  Google Scholar 

  18. Whitt, W.: Stochastic Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues. Springer, Berlin (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Offer Kella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kella, O. Martingales associated with functions of Markov and finite variation processes. Queueing Syst 100, 205–207 (2022). https://doi.org/10.1007/s11134-022-09749-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-022-09749-8

Navigation