[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Time-dependent properties of symmetric queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We settle a conjecture of Kella et al. (J. Appl. Probab. 42:223–234, 2005): the distribution of the number of jobs in the system of a symmetric M/G/1 queue at a fixed time is independent of the service discipline if the system starts empty. Our derivations are based on a time-reversal argument for regenerative processes and a connection with a clearing model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, J., Whitt, W.: Transient behavior of the M/M/1 queue via Laplace transforms. Adv. Appl. Probab. 20, 145–178 (1988)

    Article  Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    Google Scholar 

  3. Bonald, T., Tran, M.-A.: On Kelly networks with shuffling. Queueing Syst. 59, 53–61 (2008)

    Article  Google Scholar 

  4. Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks: Customers, Signals, and Product Form Solutions. Wiley, Chichester (1999)

    Google Scholar 

  5. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks. Springer, New York (2001)

    Google Scholar 

  6. Cooper, R., Niu, L.: Benes’ formula for M/G/1-FIFO ‘explained’ by preemptive-resume LIFO. J. Appl. Probab. 23, 550–554 (1986)

    Article  Google Scholar 

  7. Denisov, D., Sapozhnikov, A. On the distribution of the number of customers in the symmetric M/G/1 queue. Queueing Syst. 54, 237–241 (2006)

    Article  Google Scholar 

  8. Jain, K., Sigman, K.: A Polleczek–Khintchine formulation for M/G/1 queues with disasters. J. Appl. Probab. 33, 1191–1200 (1996)

    Article  Google Scholar 

  9. Kella, O., Zwart, A.P., Boxma, O.J.: Some time-dependent properties of symmetric M/G/1 queues. J. Appl. Probab. 42, 223–234 (2005)

    Article  Google Scholar 

  10. Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)

    Google Scholar 

  11. Kitaev, M.Yu.: The M/G/1 Processor Sharing queue: transient behavior. Queueing Syst. 14, 239–273 (1993)

    Article  Google Scholar 

  12. Kyprianou, A.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin (2006)

    Google Scholar 

  13. Rosenkrantz, W.: Calculation of the Laplace transform of the length of the busy period for the M/G/1 queue via martingales. Ann. Probab. 11, 817–818 (1983)

    Article  Google Scholar 

  14. Serfozo, R.: Introduction to Stochastic Networks. Springer, Berlin (1999)

    Google Scholar 

  15. Virtamo, J.: (2003). Insensitivity of a network of symmetric queues with balanced service rates. http://netlab.hut.fi/tutkimus/fit/publ/insens_symm_qn.pdf.

  16. Whitt, W.: The continuity of queues. Adv. Appl. Probab. 6, 175–183 (1974)

    Article  Google Scholar 

  17. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Zwart.

Additional information

Bert Zwart is also affiliated with EURANDOM, VU University Amsterdam, and Georgia Institute of Technology. His research is partly supported by NSF Grants 0727400 and 0805979, an IBM faculty award, and a VIDI Grant from NWO. This research was initiated when the first author was affiliated with EURANDOM. We are grateful to Artem Sapozhnikov for useful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fralix, B., Zwart, B. Time-dependent properties of symmetric queues. Queueing Syst 67, 33–45 (2011). https://doi.org/10.1007/s11134-010-9202-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-010-9202-1

Keywords

Mathematics Subject Classification (2000)

Navigation