Abstract
We study the polygamy property in tripartite and multipartite quantum systems. In tripartite system, we build a solution set for polygamy in tripartite system and find a sufficient and necessary condition of the set for continuous measure of quantum correlation Q to be polygamous. In multipartite system, we provide generalized definitions for polygamy in n-qubit systems with \(n\ge 4\), and then, we build polygamy inequalities with a polygamy power \(\beta \). Next we also describe that any entanglement of assistance can be polygamy according to our new definition in multipartite systems. For better understanding, we use right triangle and tetrahedron to explain our new polygamy relations. Moreover, the polygamy relations between each single qubit and its remaining partners are also investigated to enrich our results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availibility
No datasets were generated or analysed during the current study.
References
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
Gour, G., Bandyopadhyay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)
Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)
Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)
Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)
Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)
Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)
Li, Z.G., Fei, S.M., Albeverio, S., Liu, W.M.: Bound of entanglement of assistance and monogamy constraints. Phys. Rev. A 80, 034301 (2009)
Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)
Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)
Liu, S.Y., Li, B., Yang, W.L., Fan, H.: Monogamy deficit for quantum correlations in a multipartite quantum system. Phys. Rev. A 87, 062120 (2013)
Reid, M.D.: Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering. Phys. Rev. A 88, 062108 (2013)
de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)
Regula, B., DiMartino, S., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113, 110501 (2014)
Eltschka, C., Siewert, J.: Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114, 140402 (2015)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of concurrence for \(N\)-qubit systems. Phys. Rev. A 92, 062345 (2015)
Lancien, C., et al.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)
Song, W., et al.: General monogamy relation of multiqubit systems in terms of squared Rényi-\(\alpha \) entanglement. Phys. Rev. A 93, 022306 (2016)
Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)
Jia, Z.A., Wu, Y.C., Guo, G.C.: Monogamy relation in no-disturbance theories. Phys. Rev. A 94, 012111 (2016)
Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)
Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)
Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)
Guo, Y., Zhang, L.: Multipartite entanglement measure and complete monogamy relation. Phys. Rev. A 101, 032301 (2020)
Guo, Y., Jia, Y., Li, X., et al.: Genuine multipartite entanglement measure. J. Physi. A: Math. Theoretical 55, 145303 (2022)
Guo, Y., Gour, G.: Monogamy of the entanglement of formation. Phys. Rev. A 99, 042305 (2019)
Guo, Y.: When is a genuine multipartite entanglement measure monogamous? Entropy 24, 355 (2022)
Guo, Y., Huang, L.: Complete monogamy of multipartite quantum mutual information[J]. Phys. Rev. A 107, 042409 (2023)
Guo, Y.: Partial-norm of entanglement: entanglement monotones that are not monogamous. New Journal of Physics 25, 083047 (2023)
Jin, Z.X., Fei, S.M., Li-Jost, X., et al.: A new parameterized monogamy relation between entanglement and equality. Adv. Quant. Technol. 5, 2100148 (2022)
Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)
Guo, Y.: Any entanglement of assistance is polygamous. Quant. Inf. Proc. 17, 1–8 (2018)
Jin, Z.X., Yu, B., Zhu, X.N., et al.: Polygamy relation of quantum correlations with equality. Adv. Quant. Technol. 6, 2300186 (2023)
Zhu, X.N., Bao, G., Jin, Z.X., et al.: Polygamy of quantum correlation measures for tripartite systems. Quant. Inf. Proc. 23, 4 (2024)
Liang, Y.Y., Zheng, Z.J., Zhu, C.J.: Monogamy and polygamy for generalized W-class states using Rényi-\(\alpha \) entropy. Phys. Rev. A 102, 062428 (2020)
Qian, X.F., Alonso, M.A., Eberly, J.H.: Entanglement polygon inequality in qubit systems. New J. Phys. 20, 063012 (2018)
Modi, K., Brodutch, A., Cable, H., et al.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 4 (2012)
Kim, J.. S., Sanders, B.. C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theoretical 43(44), 445305 (2010)
Acknowledgements
This work is supported by the Young Doctoral Program Embarks of Guangzhou (No. 2024A04J4450). This work is also supported by the Key Lab of Guangzhou for Quantum Precision Measurement under Grant No. 202201000010 and the Key Research and Development Project of Guangdong Province under Grant No. 2020B0303300001.
Author information
Authors and Affiliations
Contributions
Yanying Liang wrote the main manuscript. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liang, Y., Situ, H. & Zheng, ZJ. Polygamy relations for tripartite and multipartite quantum systems. Quantum Inf Process 23, 385 (2024). https://doi.org/10.1007/s11128-024-04597-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04597-2