[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Polygamy relations for tripartite and multipartite quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the polygamy property in tripartite and multipartite quantum systems. In tripartite system, we build a solution set for polygamy in tripartite system and find a sufficient and necessary condition of the set for continuous measure of quantum correlation Q to be polygamous. In multipartite system, we provide generalized definitions for polygamy in n-qubit systems with \(n\ge 4\), and then, we build polygamy inequalities with a polygamy power \(\beta \). Next we also describe that any entanglement of assistance can be polygamy according to our new definition in multipartite systems. For better understanding, we use right triangle and tetrahedron to explain our new polygamy relations. Moreover, the polygamy relations between each single qubit and its remaining partners are also investigated to enrich our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availibility

No datasets were generated or analysed during the current study.

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  2. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Google Scholar 

  3. Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)

    ADS  Google Scholar 

  4. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    ADS  Google Scholar 

  5. Gour, G., Bandyopadhyay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)

    ADS  MathSciNet  Google Scholar 

  6. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    ADS  MathSciNet  Google Scholar 

  7. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    ADS  Google Scholar 

  8. Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)

    ADS  Google Scholar 

  9. Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)

    ADS  Google Scholar 

  10. Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)

    ADS  MathSciNet  Google Scholar 

  11. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)

    ADS  Google Scholar 

  12. Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)

    ADS  MathSciNet  Google Scholar 

  13. Li, Z.G., Fei, S.M., Albeverio, S., Liu, W.M.: Bound of entanglement of assistance and monogamy constraints. Phys. Rev. A 80, 034301 (2009)

    ADS  Google Scholar 

  14. Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)

    ADS  Google Scholar 

  15. Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)

    ADS  Google Scholar 

  16. Liu, S.Y., Li, B., Yang, W.L., Fan, H.: Monogamy deficit for quantum correlations in a multipartite quantum system. Phys. Rev. A 87, 062120 (2013)

    ADS  Google Scholar 

  17. Reid, M.D.: Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering. Phys. Rev. A 88, 062108 (2013)

    ADS  Google Scholar 

  18. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    ADS  Google Scholar 

  19. Regula, B., DiMartino, S., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113, 110501 (2014)

    ADS  Google Scholar 

  20. Eltschka, C., Siewert, J.: Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114, 140402 (2015)

    ADS  Google Scholar 

  21. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of concurrence for \(N\)-qubit systems. Phys. Rev. A 92, 062345 (2015)

    ADS  Google Scholar 

  22. Lancien, C., et al.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)

    ADS  Google Scholar 

  23. Song, W., et al.: General monogamy relation of multiqubit systems in terms of squared Rényi-\(\alpha \) entanglement. Phys. Rev. A 93, 022306 (2016)

    ADS  MathSciNet  Google Scholar 

  24. Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)

    ADS  Google Scholar 

  25. Jia, Z.A., Wu, Y.C., Guo, G.C.: Monogamy relation in no-disturbance theories. Phys. Rev. A 94, 012111 (2016)

    ADS  Google Scholar 

  26. Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)

    ADS  MathSciNet  Google Scholar 

  27. Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)

    ADS  MathSciNet  Google Scholar 

  28. Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

    Google Scholar 

  29. Guo, Y., Zhang, L.: Multipartite entanglement measure and complete monogamy relation. Phys. Rev. A 101, 032301 (2020)

    ADS  MathSciNet  Google Scholar 

  30. Guo, Y., Jia, Y., Li, X., et al.: Genuine multipartite entanglement measure. J. Physi. A: Math. Theoretical 55, 145303 (2022)

    ADS  MathSciNet  Google Scholar 

  31. Guo, Y., Gour, G.: Monogamy of the entanglement of formation. Phys. Rev. A 99, 042305 (2019)

    ADS  Google Scholar 

  32. Guo, Y.: When is a genuine multipartite entanglement measure monogamous? Entropy 24, 355 (2022)

    ADS  MathSciNet  Google Scholar 

  33. Guo, Y., Huang, L.: Complete monogamy of multipartite quantum mutual information[J]. Phys. Rev. A 107, 042409 (2023)

    ADS  MathSciNet  Google Scholar 

  34. Guo, Y.: Partial-norm of entanglement: entanglement monotones that are not monogamous. New Journal of Physics 25, 083047 (2023)

    ADS  MathSciNet  Google Scholar 

  35. Jin, Z.X., Fei, S.M., Li-Jost, X., et al.: A new parameterized monogamy relation between entanglement and equality. Adv. Quant. Technol. 5, 2100148 (2022)

    Google Scholar 

  36. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)

    ADS  MathSciNet  Google Scholar 

  37. Guo, Y.: Any entanglement of assistance is polygamous. Quant. Inf. Proc. 17, 1–8 (2018)

    ADS  MathSciNet  Google Scholar 

  38. Jin, Z.X., Yu, B., Zhu, X.N., et al.: Polygamy relation of quantum correlations with equality. Adv. Quant. Technol. 6, 2300186 (2023)

    Google Scholar 

  39. Zhu, X.N., Bao, G., Jin, Z.X., et al.: Polygamy of quantum correlation measures for tripartite systems. Quant. Inf. Proc. 23, 4 (2024)

    MathSciNet  Google Scholar 

  40. Liang, Y.Y., Zheng, Z.J., Zhu, C.J.: Monogamy and polygamy for generalized W-class states using Rényi-\(\alpha \) entropy. Phys. Rev. A 102, 062428 (2020)

    ADS  MathSciNet  Google Scholar 

  41. Qian, X.F., Alonso, M.A., Eberly, J.H.: Entanglement polygon inequality in qubit systems. New J. Phys. 20, 063012 (2018)

    ADS  MathSciNet  Google Scholar 

  42. Modi, K., Brodutch, A., Cable, H., et al.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 4 (2012)

    Google Scholar 

  43. Kim, J.. S., Sanders, B.. C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theoretical 43(44), 445305 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Young Doctoral Program Embarks of Guangzhou (No. 2024A04J4450). This work is also supported by the Key Lab of Guangzhou for Quantum Precision Measurement under Grant No. 202201000010 and the Key Research and Development Project of Guangdong Province under Grant No. 2020B0303300001.

Author information

Authors and Affiliations

Authors

Contributions

Yanying Liang wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Haozhen Situ.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Situ, H. & Zheng, ZJ. Polygamy relations for tripartite and multipartite quantum systems. Quantum Inf Process 23, 385 (2024). https://doi.org/10.1007/s11128-024-04597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04597-2

Keywords

Navigation