[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

No-interfering quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The well-known twin-field quantum key distribution (TF-QKD) protocol is the first one to overcome the fundamental rate-distance limit without quantum repeaters. It encodes the key information into phases of the light, and has a secret key rate scaling with the square root of the transmission transmittance by taking advantage of single-photon interference. Inspired by the idea in TF-QKD, we proposed a polarization encoding protocol to break the rate-distance limit by the property of the two states with orthogonal polarizations, named no-interfering QKD (NI-QKD). Two effective events are defined in which no interference happens. Simulation results show that the proposed protocol also holds the capacity of surpassing the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. Moreover, it has a better performance than no-phase-postselection TF-QKD (NPP-TF-QKD), one of TF-QKD’s variants, and its communication distance can reach at most 424 km. The relationships between the performance and the polarization misalignment, the phase mismatch are discussed. It turns out that one event is very robust against polarization misalignment while the other is not, and both events are sensitive to phase mismatch. The mutual information of the effective events under collective attack is also calculated, which is lower than that of NPP-TF-QKD. This new protocol provides a new angle of exploring QKD and improving the secret rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE Int. conf. on computers, systems, and signal processing (Bangalore, India), pp. 175–179 (1984)

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  4. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  5. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  6. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  7. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  8. Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11(4), 045018 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  10. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Zhang, Q., Pan, J.-W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  12. Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  13. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  14. Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3, 020315 (2022)

    Article  ADS  Google Scholar 

  15. Zeng, P., Zhou, H., Wu, W., Ma, X.: Mode-pairing quantum key distribution. Nat. Commun. 13(1), 3903 (2022)

    Article  ADS  Google Scholar 

  16. Zhu, H.-T., Huang, Y., Liu, H., Zeng, P., Zou, M., Dai, Y., Tang, S., Li, H., You, L., Wang, Z., Chen, Y.-A., Ma, X., Chen, T.-Y., Pan, J.-W.: Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking. Phys. Rev. Lett. 130, 030801 (2023)

    Article  ADS  Google Scholar 

  17. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  18. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  19. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)

    Google Scholar 

  20. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)

    Article  ADS  Google Scholar 

  21. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11, 034053 (2019)

    Article  ADS  Google Scholar 

  22. Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf. 5(1), 64 (2019)

    Article  ADS  Google Scholar 

  23. Lu, F.-Y., Yin, Z.-Q., Wang, R., Fan-Yuan, G.-J., Wang, S., He, D.-Y., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Practical issues of twin-field quantum key distribution. New J. Phys. 21(12), 123030 (2019)

    Article  Google Scholar 

  24. Zeng, P., Wu, W., Ma, X.: Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel. Phys. Rev. Appl. 13, 064013 (2020)

    Article  ADS  Google Scholar 

  25. Xu, H., Yu, Z.-W., Jiang, C., Hu, X.-L., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A 101, 042330 (2020)

    Article  ADS  Google Scholar 

  26. Yu, Y., Wang, L., Zhao, S., Mao, Q.: Decoy-state phase-matching quantum key distribution with source errors. Opt. Express 29(2), 2227–2243 (2021)

    Article  ADS  Google Scholar 

  27. Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., Chen, T.-Y., You, L., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019)

    Article  ADS  Google Scholar 

  28. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019)

    Google Scholar 

  29. Fang, X.-T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.-L., Sheng, Y.-J., Xiang, Y., Zhang, W., Li, H., et al.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14(7), 422–425 (2020)

    Article  ADS  Google Scholar 

  30. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.-L., Guan, J.-Y., Yu, Z.-W., Xu, H., Lin, J., Li, M.-J., Chen, H., Li, H., You, L., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020)

    Article  ADS  Google Scholar 

  31. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16(2), 154–161 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is partially supported by National Natural Science Foundation of China (62375140, 62001249, 61871234), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22\(\_\)0958).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.Y., W.L., and L.W.; Methodology, Y.Y. and W.L.; Simulation, Y.Y.; Validation, L.W.; Writing–original draft preparation, Y.Y.; Writing–review and editing, Y.Y. and S.Z.; Supervision, S.Z.

Corresponding author

Correspondence to Shengmei Zhao.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, W., Wang, L. et al. No-interfering quantum key distribution. Quantum Inf Process 23, 340 (2024). https://doi.org/10.1007/s11128-024-04546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04546-z

Keywords

Navigation