Abstract
The well-known twin-field quantum key distribution (TF-QKD) protocol is the first one to overcome the fundamental rate-distance limit without quantum repeaters. It encodes the key information into phases of the light, and has a secret key rate scaling with the square root of the transmission transmittance by taking advantage of single-photon interference. Inspired by the idea in TF-QKD, we proposed a polarization encoding protocol to break the rate-distance limit by the property of the two states with orthogonal polarizations, named no-interfering QKD (NI-QKD). Two effective events are defined in which no interference happens. Simulation results show that the proposed protocol also holds the capacity of surpassing the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. Moreover, it has a better performance than no-phase-postselection TF-QKD (NPP-TF-QKD), one of TF-QKD’s variants, and its communication distance can reach at most 424 km. The relationships between the performance and the polarization misalignment, the phase mismatch are discussed. It turns out that one event is very robust against polarization misalignment while the other is not, and both events are sensitive to phase mismatch. The mutual information of the effective events under collective attack is also calculated, which is lower than that of NPP-TF-QKD. This new protocol provides a new angle of exploring QKD and improving the secret rate.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
No datasets were generated or analysed during the current study.
References
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE Int. conf. on computers, systems, and signal processing (Bangalore, India), pp. 175–179 (1984)
Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)
Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11(4), 045018 (2009)
Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Zhang, Q., Pan, J.-W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)
Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)
Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)
Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3, 020315 (2022)
Zeng, P., Zhou, H., Wu, W., Ma, X.: Mode-pairing quantum key distribution. Nat. Commun. 13(1), 3903 (2022)
Zhu, H.-T., Huang, Y., Liu, H., Zeng, P., Zou, M., Dai, Y., Tang, S., Li, H., You, L., Wang, Z., Chen, Y.-A., Ma, X., Chen, T.-Y., Pan, J.-W.: Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking. Phys. Rev. Lett. 130, 030801 (2023)
Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)
Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)
Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)
Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11, 034053 (2019)
Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf. 5(1), 64 (2019)
Lu, F.-Y., Yin, Z.-Q., Wang, R., Fan-Yuan, G.-J., Wang, S., He, D.-Y., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Practical issues of twin-field quantum key distribution. New J. Phys. 21(12), 123030 (2019)
Zeng, P., Wu, W., Ma, X.: Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel. Phys. Rev. Appl. 13, 064013 (2020)
Xu, H., Yu, Z.-W., Jiang, C., Hu, X.-L., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A 101, 042330 (2020)
Yu, Y., Wang, L., Zhao, S., Mao, Q.: Decoy-state phase-matching quantum key distribution with source errors. Opt. Express 29(2), 2227–2243 (2021)
Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., Chen, T.-Y., You, L., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019)
Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019)
Fang, X.-T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.-L., Sheng, Y.-J., Xiang, Y., Zhang, W., Li, H., et al.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14(7), 422–425 (2020)
Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.-L., Guan, J.-Y., Yu, Z.-W., Xu, H., Lin, J., Li, M.-J., Chen, H., Li, H., You, L., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020)
Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16(2), 154–161 (2022)
Acknowledgements
The work is partially supported by National Natural Science Foundation of China (62375140, 62001249, 61871234), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22\(\_\)0958).
Author information
Authors and Affiliations
Contributions
Conceptualization, Y.Y., W.L., and L.W.; Methodology, Y.Y. and W.L.; Simulation, Y.Y.; Validation, L.W.; Writing–original draft preparation, Y.Y.; Writing–review and editing, Y.Y. and S.Z.; Supervision, S.Z.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yu, Y., Li, W., Wang, L. et al. No-interfering quantum key distribution. Quantum Inf Process 23, 340 (2024). https://doi.org/10.1007/s11128-024-04546-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04546-z