[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Tighter parameterized monogamy relations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We seek a systematic tightening method to represent the monogamy relation for some measure in multipartite quantum systems. By introducing a family of parameterized bounds, we obtain tighter lowering bounds for the monogamy relation compared with the most recently discovered relations. We provide detailed examples to illustrate why our bounds are better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)

    Article  ADS  Google Scholar 

  3. Pawlowski, M.: Generalized entropy and global quantum discord in multiparty quantum system. Phys. Rev. A 82, 032313 (2010)

    ADS  Google Scholar 

  4. Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Seevinck, M.P.: Measurement of signal intensities in the presence of noise in MR images. Quantum Inf. Process. 9, 273 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barrett, J.: Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65, 042302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)

    Article  ADS  Google Scholar 

  8. Gigena, N., Rossignoli, R.: Bipartite entanglement in fermion systems. Phys. Rev. A 95, 062320 (2017)

    Article  ADS  Google Scholar 

  9. Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. A 356, 1769 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  11. Acin, A., Masanes, L., Gisin, N.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  12. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  13. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(22), 220503 (2006)

    Article  ADS  Google Scholar 

  14. Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

    Article  ADS  Google Scholar 

  15. Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92(4), 042307 (2015)

    Article  ADS  Google Scholar 

  16. Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    Article  ADS  Google Scholar 

  18. Kumar, A., Prabhu, R., Sen(De), A., Sen, U.: Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)

  19. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  20. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75(6), 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  22. Jin, Z., Fei, S., Qiao, C.: Complementary quantum correlations among multipartite systems. Quantum Inf. Process. 19, 101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, M.M., Jing, N., Zhao, H.: Monogamy and polygamy relations of quantum correlations for multipartite systems. Int. J. Theoret. Phys. 61, 6 (2022)

    Article  MathSciNet  Google Scholar 

  24. Zhang, M.M., Jing, N., Zhao, H.: Tightening monogamy and polygamy relations of unified entanglement in multipartite systems. Quantum Inf. Process. 21, 136 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, X., Jing, N., Liu, M., Ma, H.T.: On monogamy and polygamy relations of multipartite systems. Phys. Scr. 98, 035106 (2023)

    Article  ADS  Google Scholar 

  26. Cao, Y., Jing, N., Wang, Y.L.: Weighted monogamy and polygamy relations. Laser Phys. Lett. 21, 045205 (2024)

    Article  ADS  Google Scholar 

  27. Gao, L.M., Yan, F.L., Gao, T.: Tighter monogamy and polygamy relations of multiparty quantum entanglement. Quantum Inf. Process. 19, 276 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tao, Y.H., Zheng, K., Jin, Z.X., Fei, S.M.: Tighter monogamy relations for concurrence and negativity in multiqubit system. Mathematics 11, 1159 (2023)

    Article  Google Scholar 

  29. Li, J.Y., Shen, Z.X., Fei, S.M.: Tighter monogamy inequalities of multiqubit entanglement. Laser Phys. Lett. 20 (2023)

  30. Yang, L.M., Chen, B., Fei, S.M., Wang, Z.X.: Tighter constraints of multiqubit entanglement. Commun. Theor. Phys. 71, 545 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Proc. 16, 77 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  36. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Jin, Z.X., Fei, S.M.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)

    Article  ADS  Google Scholar 

  38. Lee, S., Chi, D.P., Oh, S.D., et al.: Conver-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)

    Article  ADS  Google Scholar 

  39. Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Vedral, V., Plenio, M.B., Rippin, M.A., et al.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. Streltsov, A., Kampermann, H., Bru\({\mathfrak{B}}\), D.: Linking a distance measure of entanglement to its convex roof. New J. Phys. 12, 123004 (2010)

  42. Gao, L.M., Yan, F.L., Gao, T.: Monogamy inequality in terms of entanglement measures based on distance for pure multiqubit states. Int. J. Theor. Phys. 59(10), 3098–3106 (2020)

    Article  MathSciNet  Google Scholar 

  43. Acín, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text, and Y. Wang prepared Figs. 12, and 3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Naihuan Jing.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Jing, N., Misra, K. et al. Tighter parameterized monogamy relations. Quantum Inf Process 23, 282 (2024). https://doi.org/10.1007/s11128-024-04495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04495-7

Keywords

Mathematics Subject Classification

Navigation