Abstract
We seek a systematic tightening method to represent the monogamy relation for some measure in multipartite quantum systems. By introducing a family of parameterized bounds, we obtain tighter lowering bounds for the monogamy relation compared with the most recently discovered relations. We provide detailed examples to illustrate why our bounds are better.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analyzed during the current study.
References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)
Pawlowski, M.: Generalized entropy and global quantum discord in multiparty quantum system. Phys. Rev. A 82, 032313 (2010)
Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)
Seevinck, M.P.: Measurement of signal intensities in the presence of noise in MR images. Quantum Inf. Process. 9, 273 (2010)
Barrett, J.: Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65, 042302 (2002)
Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)
Gigena, N., Rossignoli, R.: Bipartite entanglement in fermion systems. Phys. Rev. A 95, 062320 (2017)
Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. A 356, 1769 (1998)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Acin, A., Masanes, L., Gisin, N.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(22), 220503 (2006)
Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)
Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92(4), 042307 (2015)
Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Kumar, A., Prabhu, R., Sen(De), A., Sen, U.: Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)
Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)
Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75(6), 062308 (2007)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Jin, Z., Fei, S., Qiao, C.: Complementary quantum correlations among multipartite systems. Quantum Inf. Process. 19, 101 (2020)
Zhang, M.M., Jing, N., Zhao, H.: Monogamy and polygamy relations of quantum correlations for multipartite systems. Int. J. Theoret. Phys. 61, 6 (2022)
Zhang, M.M., Jing, N., Zhao, H.: Tightening monogamy and polygamy relations of unified entanglement in multipartite systems. Quantum Inf. Process. 21, 136 (2022)
Zhang, X., Jing, N., Liu, M., Ma, H.T.: On monogamy and polygamy relations of multipartite systems. Phys. Scr. 98, 035106 (2023)
Cao, Y., Jing, N., Wang, Y.L.: Weighted monogamy and polygamy relations. Laser Phys. Lett. 21, 045205 (2024)
Gao, L.M., Yan, F.L., Gao, T.: Tighter monogamy and polygamy relations of multiparty quantum entanglement. Quantum Inf. Process. 19, 276 (2020)
Tao, Y.H., Zheng, K., Jin, Z.X., Fei, S.M.: Tighter monogamy relations for concurrence and negativity in multiqubit system. Mathematics 11, 1159 (2023)
Li, J.Y., Shen, Z.X., Fei, S.M.: Tighter monogamy inequalities of multiqubit entanglement. Laser Phys. Lett. 20 (2023)
Yang, L.M., Chen, B., Fei, S.M., Wang, Z.X.: Tighter constraints of multiqubit entanglement. Commun. Theor. Phys. 71, 545 (2019)
Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Proc. 16, 77 (2017)
Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)
Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)
Jin, Z.X., Fei, S.M.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)
Lee, S., Chi, D.P., Oh, S.D., et al.: Conver-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)
Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511 (2015)
Vedral, V., Plenio, M.B., Rippin, M.A., et al.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
Streltsov, A., Kampermann, H., Bru\({\mathfrak{B}}\), D.: Linking a distance measure of entanglement to its convex roof. New J. Phys. 12, 123004 (2010)
Gao, L.M., Yan, F.L., Gao, T.: Monogamy inequality in terms of entanglement measures based on distance for pure multiqubit states. Int. J. Theor. Phys. 59(10), 3098–3106 (2020)
Acín, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cao, Y., Jing, N., Misra, K. et al. Tighter parameterized monogamy relations. Quantum Inf Process 23, 282 (2024). https://doi.org/10.1007/s11128-024-04495-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04495-7