[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A quantum Bayes’ rule and related inference

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum analogue of Bayesian inference is considered here. Quantum state-update rule associated with instrument is elected as a quantum Bayes’ rule. A sufficient condition on the spectrum of a trivial CP instrument repeatedly applied for the uniformly exponential convergence of posterior normal state and a sufficient condition on the kernel of trivial CP instruments sampled from an ensemble as well as the strict positivity of the sequential measurement scheme for the exponential convergence of posterior normal state are obtained, as a result of which, two sufficient conditions for the weak consistency of posterior normal state are deduced as corollaries. The fundamental notions and results of Bayesian inference such as Bayes solution, posterior solution, admissibilty and minimax of Bayes solution, and posterior inference, are generalized based on quantum Bayes’ rule. Our theory retains the classical one as a special case though we note that unlike the classical case, posterior normal state varies with the order of observations; posterior normal state may not converge as the number of observations tends to infinity; for a given quantum Bayesian decision problem, a quantum Bayes solution and a quantum posterior solution are generally no longer equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis, pp. 118–166. Springer (1985)

  2. Fuchs, C.A.: Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50, 987–1023 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)

    Article  ADS  Google Scholar 

  4. Cenxin, A.C., Onggadinata, K., Kaszlikowski, D., Scarani, V.: Quantum Bayesian inference in quasiprobability representations. PRX Quantum 4, 020352 (2023)

    Article  ADS  Google Scholar 

  5. Coecke, B., Spekkens, R.W.: Picturing classical and quantum Bayesian inference. Synthese 186, 651–696 (2012)

    Article  MathSciNet  Google Scholar 

  6. Warmuth, M.K.: A Bayes rule for density matrices. In: Advances in Neural Information Processing Systems, vol. 18. MIT Press (2005)

  7. Parzygnat, A.J., Fullwood, J.: From time-reversal symmetry to quantum Bayes’ rules. PRX Quantum 4, 020334 (2023)

    Article  ADS  Google Scholar 

  8. Farenick, D., Kozdron, M.J.: Conditional expectation and Bayes’ rule for quantum random variables and positive operator valued measures. J. Math. Phys. 53, 042201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brody, D.C., Meister, B.: Bayesian inference in quantum systems. Physica A 223, 348–364 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ban, M.: Bayes cost of parameter estimation for a quantum system interacting with an environment. Quantum Inf. Process. 15, 2213–2230 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Teo, Y.S., Oh, C., Jeong, H.: Bayesian error regions in quantum estimation i: analytical reasonings. New J. Phys. 20, 093009 (2018)

    Article  Google Scholar 

  12. Oh, C., Teo, Y.S., Jeong, H.: Bayesian error regions in quantum estimation ii: region accuracy and adaptive methods. New J. Phys. 20, 093010 (2018)

    Article  ADS  Google Scholar 

  13. Quadeer, M., Tomamichel, M., Ferrie, C.: Minimax quantum state estimation under Bregman divergence. Quantum 3, 126 (2019)

    Article  Google Scholar 

  14. Lukens, J.M., Law, K.J., Jasra, A., Lougovski, P.: A practical and efficient approach for Bayesian quantum state estimation. New J. Phys. 22, 063038 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Low, G.H., Yoder, T.J., Chuang, I.L.: Quantum inference on Bayesian networks. Phys. Rev. A 89, 062315 (2014)

    Article  ADS  Google Scholar 

  16. Ohno, H.: Quantum Bayesian inference for parameter estimation using quantum generative model. Quantum Inf. Process. 22, 1–19 (2023)

    Article  MathSciNet  Google Scholar 

  17. Khrennikov, A.: Quantum Bayesianism as the basis of general theory of decision-making. Philo. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150245 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Busemeyer, J.R., Trueblood, J.: Comparison of quantum and Bayesian inference models. In: International Symposium on Quantum Interaction, pp. 29–43 (2009)

  19. Pothos, E., Trueblood, J.: A quantum geometric model of similarity. Psychol. Rev. 120, 679–96 (2013)

    Article  Google Scholar 

  20. Trueblood, J.S., Busemeyer, J.R.: A quantum probability account of order effects in inference. Cognit. Sci. 35(8), 1518–52 (2011)

    Article  Google Scholar 

  21. Ozawa, M., Khrennikov, A.: Application of theory of quantum instruments to psychology: combination of question order effect with response replicability effect. Entropy 22, 37 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pothos, E.M., Busemeyer, J.R.: Quantum cognition. Annu. Rev. Psychol. 73, 749–778 (2022)

    Article  Google Scholar 

  23. Khrennikov, A.Y.: Quantum-like modeling: cognition, decision making, and rationality. Mind Soc. 19, 307–310 (2020)

    Article  Google Scholar 

  24. Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism (2010). arXiv:1003.5209 [quant-ph]

  25. González, F.A., Vargas-Calderón, V., Vinck-Posada, H.: Classification with quantum measurements. J. Phys. Soc. Jpn. 90, 044002 (2020)

    Article  ADS  Google Scholar 

  26. Schack, R., Brun, T.A., Caves, C.M.: Quantum Bayes rule. Phys. Rev. A 64, 014305 (2001)

    Article  ADS  Google Scholar 

  27. Vanslette, K.: The quantum Bayes rule and generalizations from the quantum maximum entropy method. J. Phys. Commun. 2, 025017 (2018)

    Article  Google Scholar 

  28. Bub, J.: Quantum probabilities as degrees of belief. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Modern Phys. 38, 232–254 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Parzygnat, A.J., Russo, B.P.: A non-commutative Bayes’ theorem. Linear Algebra Appl. 644, 28–94 (2022)

    Article  MathSciNet  Google Scholar 

  30. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum measurement, vol 23. Springer (2016)

  31. McLaren, D., Plosker, S., Ramsey, C.: On operator valued measures. Houst. J. Math. 46(1), 201–226 (2017)

  32. Ozawa, M.: Concepts of conditional expectations in quantum theory. J. Math. Phys. 26, 1948–1955 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  33. Pellonpää, J.-P.: Quantum instruments: I. Extreme instruments. J. Phys. A Math. Theor. 46, 025302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  35. Okamura, K., Ozawa, M.: Measurement theory in local quantum physics. J. Math. Phys. 57, 015209 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ozawa, M.: Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 311, 350–416 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ozawa, M.: Conditional probability and a posteriori states in quantum mechanics. Publ. Res. Inst. Math. Sci. 21, 279–295 (1985)

    Article  MathSciNet  Google Scholar 

  38. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  39. Carmeli, C., Heinosaari, T., Toigo, A.: Sequential measurements of conjugate observables. J. Phys. A Math. Theor. 44, 285304 (2011)

    Article  MathSciNet  Google Scholar 

  40. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55, 075204 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Movassagh, R., Schenker, J.: An ergodic theorem for quantum processes with applications to matrix product states. Commun. Math. Phys. 395, 1175–1196 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  42. Barndorff-Nielsen, O.E., Gill, R.D., Jupp, P.E.: On quantum statistical inference. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 65, 775–804 (2003)

    Article  MathSciNet  Google Scholar 

  43. Gill, R.D., Guţă, M.I.: On asymptotic quantum statistical inference, pp. 105–127 (2013)

Download references

Acknowledgements

The author would like to thank Professor Naihui Chen, Professor Weihua Liu and the anonymous reviewers for their criticism and advice on this paper.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions statement is redundant here.

Corresponding author

Correspondence to Huayu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H. A quantum Bayes’ rule and related inference. Quantum Inf Process 23, 271 (2024). https://doi.org/10.1007/s11128-024-04475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04475-x

Keywords

Navigation