Abstract
We study the polygamy of arbitrary quantum correlation measures Q for tripartite quantum systems. Both sufficient and necessary conditions for Q to be polygamous in terms of the \(\alpha \)th power of Q are explicitly derived. Moreover, analytical polygamy conditions for any quantum correlation measure Q have been also presented with respect to certain subsets of quantum states. Detailed examples are given to illustrate our results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entanglement. Rev. Mod. Phys. 81, 865 (2009)
Ollivier, H., Zurek, W.H.: Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88, 017901 (2001)
Chen, K., Albeverio, S., Fei, S.M.: Concurrence of Arbitrary Dimensional Bipartite Quantum States. Phys. Rev. Lett. 95, 040504 (2005)
Modi, K., Brodutch, A., Cable, H., Patrek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)
Asutosh, K.: Conditions for monogamy of quantum correlations in multipartite systems. Phys. Lett. A 380(38), 3044–3050 (2016)
Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)
Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf. Process 17, 222 (2018)
Jin, Z.X., Fei, S.M.: Super-activation of monogamy relations for non-additive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)
Xu, P., Wang, D., Ye, L.: The transfer and monogamy of quantum correlations for two qubits. Int J Theor Phys 53, 12 (2014)
Prakash, S., Jain, A., Kapur, B., Seth, S.: Normal form for single-qutrit Clifford+T operators and synthesis of single-qutrit gates. Phys. Rev. A 98, 032324 (2018)
Ollivier, H., Zurek, W.H.: Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88, 017901 (2001)
Usha Devi, A. R., Rajagopal, A.K.: Generalized information theoretic measure to discern the quantumness of correlations, Phys. Rev. Lett. 100, 140502 (2008)
Guo, Y.: Any entanglement of assistance is polygamous. Quantum Information Processing 17, 222 (2018)
Cheng, S.M., Milne, A., Hall, M.J.W., Wiseman, H.M.: Volume monogamy of quantum steering ellipsoids for multiqubit systems. Phys. Rev. A 94, 042105 (2016)
Saha, D., Ramanathan, R.: Activation of monogamy in nonlocality using local contextuality. Phys. Rev. A 95, 030104(R) (2017)
Bai, Y.K., Xu, Y.F., Wang, Z.D.: General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems. Phys. Rev. Lett. 113, 100503 (2014)
Kumar, A.: Conditions for monogamy of quantum correlations in multipartite systems. Phys. Lett. A 380, 3044 (2016)
deOliveira, T.R., Cornelio, M. F., Fanchini, F.F.: Monogamy of entanglement of formation, Phys. Rev. A 89, 034303(2014)
Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis q-entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)
Lancien, C., Martino, S.D., Huber, M., Piani, M., Adesso, G., Winter, A.: Should Entanglement Measures be Monogamous or Faithful? Phys. Rev. Lett. 117, 060501 (2016)
Guo, Y., Gour, G.: Monogamy of the entanglement of formation. Phys. Rev. A 99, 042305 (2019)
Guo, Y.: Strict entanglement monotonicity under local operations and classical communication. Phys. Rev. A 99, 022338 (2019)
Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)
Jin, Z.X., Fei, S.M., Jost, L., Qiao, C.F.: A new parameterized monogamy relation of entanglement with equality. Advanced Quantum Technologies 6, 5 (2022)
Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)
Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)
Jin, Z.X., Fei, S.M.: Polygamy relations of multipartite entanglement beyond qubits, Journal of physics. A. Mathematical and theoretical 52, 16 (2019)
Zhu, X.N., Bao, G., Jin, Z.X., Fei, S.M.: Monogamy of entanglement for tripartite systems. Phys. Rev. A 107, 052404 (2023)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Reviews of Modern Physics 84, 4 (2011)
Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States. Phys. Rev. Lett. 85, 1560 (2000)
V. Danani\(\acute{\text{c}}\), and A. Bjeli\(\check{\text{ z }}\), General Criteria for the Stability of Uniaxially Ordered States of Incommensurate-Commensurate Systems, Phys. Rev. Lett. 80, 10(1998)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Devi, S.A., Rajagopal, A.K.: Monogamy of quantum correlations in three qubit pure states using Rajagopal-Rendell (RR) quantum deficit. Phys. Rev. A 85, 012103 (2012)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under grant No. 12075159, No. 12171044 and No. 12301582; the specific research fund of the Innovation Platform for Academicians of Hainan Province under Grant No. YSPTZX202215; Guangdong Basic and Applied Basic Research Foundation under Grants No. 2024A1515030023; and the Start-up Funding of Dongguan University of Technology No. 221110084.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest statement
The authors declare that they have no conflicts of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhu, XN., Bao, G., Jin, ZX. et al. Polygamy of quantum correlation measures for tripartite systems. Quantum Inf Process 23, 146 (2024). https://doi.org/10.1007/s11128-024-04352-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04352-7