[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Polygamy of quantum correlation measures for tripartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the polygamy of arbitrary quantum correlation measures Q for tripartite quantum systems. Both sufficient and necessary conditions for Q to be polygamous in terms of the \(\alpha \)th power of Q are explicitly derived. Moreover, analytical polygamy conditions for any quantum correlation measure Q have been also presented with respect to certain subsets of quantum states. Detailed examples are given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ollivier, H., Zurek, W.H.: Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  3. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of Arbitrary Dimensional Bipartite Quantum States. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Patrek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  5. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  6. Asutosh, K.: Conditions for monogamy of quantum correlations in multipartite systems. Phys. Lett. A 380(38), 3044–3050 (2016)

    Article  MathSciNet  Google Scholar 

  7. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf. Process 17, 222 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. Jin, Z.X., Fei, S.M.: Super-activation of monogamy relations for non-additive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)

    Article  ADS  Google Scholar 

  10. Xu, P., Wang, D., Ye, L.: The transfer and monogamy of quantum correlations for two qubits. Int J Theor Phys 53, 12 (2014)

    Article  Google Scholar 

  11. Prakash, S., Jain, A., Kapur, B., Seth, S.: Normal form for single-qutrit Clifford+T operators and synthesis of single-qutrit gates. Phys. Rev. A 98, 032324 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  13. Usha Devi, A. R., Rajagopal, A.K.: Generalized information theoretic measure to discern the quantumness of correlations, Phys. Rev. Lett. 100, 140502 (2008)

  14. Guo, Y.: Any entanglement of assistance is polygamous. Quantum Information Processing 17, 222 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cheng, S.M., Milne, A., Hall, M.J.W., Wiseman, H.M.: Volume monogamy of quantum steering ellipsoids for multiqubit systems. Phys. Rev. A 94, 042105 (2016)

    Article  ADS  Google Scholar 

  16. Saha, D., Ramanathan, R.: Activation of monogamy in nonlocality using local contextuality. Phys. Rev. A 95, 030104(R) (2017)

    Article  ADS  Google Scholar 

  17. Bai, Y.K., Xu, Y.F., Wang, Z.D.: General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems. Phys. Rev. Lett. 113, 100503 (2014)

    Article  ADS  Google Scholar 

  18. Kumar, A.: Conditions for monogamy of quantum correlations in multipartite systems. Phys. Lett. A 380, 3044 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. deOliveira, T.R., Cornelio, M. F., Fanchini, F.F.: Monogamy of entanglement of formation, Phys. Rev. A 89, 034303(2014)

  20. Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis q-entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)

    Article  ADS  Google Scholar 

  21. Lancien, C., Martino, S.D., Huber, M., Piani, M., Adesso, G., Winter, A.: Should Entanglement Measures be Monogamous or Faithful? Phys. Rev. Lett. 117, 060501 (2016)

    Article  ADS  Google Scholar 

  22. Guo, Y., Gour, G.: Monogamy of the entanglement of formation. Phys. Rev. A 99, 042305 (2019)

    Article  ADS  Google Scholar 

  23. Guo, Y.: Strict entanglement monotonicity under local operations and classical communication. Phys. Rev. A 99, 022338 (2019)

    Article  ADS  Google Scholar 

  24. Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

    Article  Google Scholar 

  25. Jin, Z.X., Fei, S.M., Jost, L., Qiao, C.F.: A new parameterized monogamy relation of entanglement with equality. Advanced Quantum Technologies 6, 5 (2022)

    Google Scholar 

  26. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jin, Z.X., Fei, S.M.: Polygamy relations of multipartite entanglement beyond qubits, Journal of physics. A. Mathematical and theoretical 52, 16 (2019)

    Article  Google Scholar 

  29. Zhu, X.N., Bao, G., Jin, Z.X., Fei, S.M.: Monogamy of entanglement for tripartite systems. Phys. Rev. A 107, 052404 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  30. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Reviews of Modern Physics 84, 4 (2011)

    Google Scholar 

  31. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  32. V. Danani\(\acute{\text{c}}\), and A. Bjeli\(\check{\text{ z }}\), General Criteria for the Stability of Uniaxially Ordered States of Incommensurate-Commensurate Systems, Phys. Rev. Lett. 80, 10(1998)

  33. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    Article  ADS  Google Scholar 

  34. Devi, S.A., Rajagopal, A.K.: Monogamy of quantum correlations in three qubit pure states using Rajagopal-Rendell (RR) quantum deficit. Phys. Rev. A 85, 012103 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under grant No. 12075159, No. 12171044 and No. 12301582; the specific research fund of the Innovation Platform for Academicians of Hainan Province under Grant No. YSPTZX202215; Guangdong Basic and Applied Basic Research Foundation under Grants No. 2024A1515030023; and the Start-up Funding of Dongguan University of Technology No. 221110084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Na Zhu.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XN., Bao, G., Jin, ZX. et al. Polygamy of quantum correlation measures for tripartite systems. Quantum Inf Process 23, 146 (2024). https://doi.org/10.1007/s11128-024-04352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04352-7

Keywords

Navigation