Abstract
Quantum random walks represent a powerful tool for the implementation of various quantum algorithms. We consider a convolution problem for the graphs which provide quantum and classical random walks. We suggest a new method for lattices and hypercycle convolution that preserves quantum walk dynamics. Our method is based on the fact that some graphs represent a result of Kronecker’s product of line graphs. We support our methods by means of various numerical experiments that check quantum and classical random walks on hypercycles and their convolutions. Our findings may be useful for saving a significant number of qubits required for algorithms that use quantum walk simulation on quantum devices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
All data used during this study are available within the article.
References
Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369–91 (1947)
Kutner, R., Masoliver, J.: The continuous time random walk, still trendy: fifty-year history, state of art and outlook. Eur. Phys. J. B 90, 50 (2017)
Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)
Xia, F., Liu, J., Nie, H., Fu, Y., Wan, L., Kong, X.: Random walks: a review of algorithms and applications. IEEE Trans. Emerg. Top. Comput. Intell. 4(2), 95–107 (2019)
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)
Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)
Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)
Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1(04), 507–518 (2003)
Madhu, A.K., Melnikov, A.A., Fedichkin, L.E., Alodjants, A.P., Lee, R.K.: Quantum walk processes in quantum devices. Heliyon 9(3), e13416 (2023)
Portugal, R.: Quantum walks and search algorithms, vol. 19. Springer, New York (2013)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)
Melnikov, A., Kordzanganeh, M., Alodjants, A., Lee, R.K.: Quantum machine learning: from physics to software engineering. Adv. Phys. X 8(1), 2165452 (2023)
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing (pp. 37-49) (2001, July)
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing (pp. 50-59) (2001, July)
Solenov, D., Fedichkin, L.: Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73(1), 012313 (2006)
Krovi, H., Brun, T.A.: Hitting time for quantum walks on the hypercube. Phys. Rev. A 73(3), 032341 (2006)
Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133(2), 215–235 (2005)
Makmal, A., Zhu, M., Manzano, D., Tiersch, M., Briegel, H.J.: Quantum walks on embedded hypercubes. Phys. Rev. A 90(2), 022314 (2014)
Santos, R.A.M., Portugal, R.: Quantum hitting time on the complete graph. Int. J. Quantum Inf. 8(05), 881–894 (2010)
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (pp. 59-68) (2003)
Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Melnikov, A.A., Fedichkin, L.E., Alodjants, A.: Predicting quantum advantage by quantum walk with convolutional neural networks. New J. Phys. 21(12), 125002 (2019)
Gurvitz, S.A., Fedichkin, L.E., Mozyrsky, D., Berman, G.P.: Relaxation and the Zeno effect in qubit measurements. Phys. Rev. Lett. 91, 066801 (2003)
Melnikov, A.A., Fedichkin, L.E., Lee, R.K., Alodjants, A.P.: Machine learning transfer efficiencies for noisy quantum walks. Adv. Quantum Technol. 3(4), 1900115 (2020)
Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks Phys. Rev. A 79, 052335 (2019)
Portugal, R., Moqadam, J.K.: Implementation of continuous-time quantum walks on quantum computers (2022). arXiv:2212.08889
Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014)
Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)
Perez-Leija, A., Keil, R., Kay, A., Moya-Cessa, H., Nolte, S., Kwek, L.C., Rodríguez-Lara, B.M., Szameit, A., Christodoulides, D.N.: Coherent quantum transport in photonic lattices. Phys. Rev. A 87(1), 012309 (2013)
Tang, H., Di Franco, C., Shi, Z.Y., He, T.S., Feng, Z., Gao, J., Sun, Ke., Wang, C.Y., Lai, P.C., Xu, X.Y., Wang, Y., Qiao, L.F., Yang, A.L., Jin, X.M.: Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics 12(12), 754–758 (2018)
Maczewsky, L.J., Wang, K., Dovgiy, A.A., Miroshnichenko, A.E., Moroz, A., Ehrhardt, M., Heinrich, M., Christodoulides, D.N., Szameit, A., Sukhorukov, A.A.: Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. Nat. Photonics 14(2), 76–81 (2020)
Yu, S., Piao, X., Hong, J., Park, N.: Interdimensional optical isospectrality inspired by graph networks. Optica 3(8), 836–839 (2016)
Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological quantum memory. J. Math. Phys. 43(9), 4452–4505 (2002)
Pedrocchi, F.L., Hutter, A., Wootton, J.R., Loss, D.: Enhanced thermal stability of the toric code through coupling to a bosonic bath. Phys. Rev. A 88, 062313 (2013)
Lu, D., Biamonte, J.D., Li, J., Li, H., Johnson, T.H., Bergholm, V., Faccin, M., Zimborás, A., Laflamme, R., Baugh, J., Lloyd, S.: Chiral quantum walks. Phys. Rev. A 93(4), 042302 (2016)
Melnikov, A.A., Alodjants, A.P., Fedichkin, L.E.: Tunneling in double-layer optical waveguides as quantum walks on graphs. Proc. Steklov Inst. Math. 313, 142 (2021)
Skryabin, N., Kalinkin, A., Dyakonov, I., Kulik, S.: Femtosecond laser written depressed-cladding waveguide 2 \(\times \) 2, 1 \(\times \) 2, and 3 \(\times \) 3 directional couplers in Tm3+:YAG crystal. Micromachines 11, 1 (2020)
Chen, F., Aldana, J.: Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 8, 251 (2014)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)
Manzano, D.A.: A short introduction to the Lindblad master equation. AIP Adv. 10, 025106 (2020)
Acknowledgements
The results of this work related to Sect.2 were funded by the Ministry of Science and Higher Education of the Russian Federation and South Ural State University (Agreement No. 075-15-2022-1116). Studies described in Sects. 3 and 4 are supported by project No. 2019-1339 (Goszadanie) of the Ministry of Science and Higher Education of the Russian Federation.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abramov, R., Fedichkin, L., Tsarev, D. et al. High-dimensional graphs convolution for quantum walks photonic applications. Quantum Inf Process 23, 175 (2024). https://doi.org/10.1007/s11128-024-04351-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04351-8