[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Entropy production of quantum Markov semigroup associated with open quantum walks on the periodic graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we compute the entropy production of quantum Markov semigroup associated with open quantum walks. The entropy production, for the classical as well as quantum systems, measures the deviation from the symmetry between the forward and backward processes. The detailed balance condition with respect to an invariant state is the condition for the symmetry of the dynamics. Here we consider the quantum Markov semigroups associated with open quantum walks on the periodic graphs. On the one hand, the model serves as a good example to study the quantum detailed balance condition and the entropy production. On the other hand, from the viewpoint of the dynamics itself, the concept of entropy production helps for a better understanding of the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Accardi, L., Imafuku, K.: Dynamical detailed balance and local KMS condition for non-equilibrium states. Int. J. Mod. Phys. B 18(04n05), 435–467 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Agarwal, G.S.: Open quantum Markovian systems and the microreversibility. Z. Phys. 258(5), 409–422 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Albeverio, S., Goswami, D.: A remark on the structure of symmetric quantum dynamical semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 571–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alicki, R.: On the detailed balance condition for non-Hamiltonian systems. Rep. Math. Phys. 10, 249–258 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bolaños-Servin, J.R., Quezada, R.: A cycle decomposition and entropy production for circulant quantum Markov semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16(2), 23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cipriani, F.: Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras. J. Funct. Anal. 147, 259–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fagnola, F.: Quantum Markov semigroups and quantum flows. Proyecciones 18, 1–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fagnola, F., Rebolledo, R.: From classical to quantum entropy production. In: Quantum Probability and Infinite Dimensional Analysis, QP–PQ: Quantum Probability and White Noise Analysis, vol. 25, pp. 245–261. World Scientific, Singapore (2010)

  9. Fagnola, F., Rebolledo, R.: Entropy production for quantum Markov semigroups. Commun. Math. Phys. 335, 547–570 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fagnola, F., Rebolledo, R.: Entropy production and detailed balance for a class of quantum Markov semigroup. Open Syst. Inf. Dyn. 22(3), 1550013 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fagnola, F., Umanita, V.: Generators of detailed balance quantum Markov semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(3), 335–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fagnola, F., Umanita, V.: Detailed balance, time reversal and generators of quantum Markov semigroups. M. Zametki 84(1), 108–116 (2008) (Russian); translation Math. Notes 84(1), 108–115 (2008)

  13. Fagnola, F., Umanita, V.: Generators of KMS symmetric Markov semigroups on \({\cal{B}}(h)\) symmetry and quantum detailed balance. Commun. Math. Phys. 298, 523–547 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. De Gruyter Stuidies in Mathematica, vol. 19. De Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  15. Goldstein, S., Lindsay, J.M.: KMS symmetric semigroups. Math. Z. 219, 591–608 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ko, C.K., Konno, N., Segawa, E., Yoo, H.J.: Central limit theorems for open quantum random walks on the crystal lattices. J. Stat. Phys. 176, 710–735 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kossakowski, A., Frigerio, A., Gorini, V., Verri, M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57, 97–110 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  20. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1991)

    MATH  Google Scholar 

  22. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 931 (1995)

    MathSciNet  Google Scholar 

  23. Maes, C., Redig, F., Van Moffaert, A.: On the definition of entropy production, via examples. J. Math. Phys. 41(3), 1528–1554 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Maes, C., Netocný, K., Wynants, B.: On and beyond entropy production: the case of Markov jump processes. Markov Process. Relat. Fields 14, 445–464 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Majewski, W.A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25, 614–616 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Majewski, W.A., Streater, R.F.: Detailed balance and quantum dynamical maps. J. Phys. A Math. Gen. 31, 7981–7995 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Park, Y.M.: Remarks on the structure of Dirichlet forms on standard forms of von Neumann algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 179–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics 85, Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  29. Sunada, T.: Topological Crystallography with a View Towards Discrete Geometric Analysis. Surveys and Tutorials in Applied Mathematical Sciences, vol. 6. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for valuable comments on the first version of the manuscript. The work of HJY was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2020R1F1A101075).

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Jae Yoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, C.K., Yoo, H.J. Entropy production of quantum Markov semigroup associated with open quantum walks on the periodic graphs. Quantum Inf Process 22, 81 (2023). https://doi.org/10.1007/s11128-023-03827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03827-3

Keywords

Mathematics Subject Classification

Navigation