Abstract
The relations between the resource theoretic measures of quantum coherence are rigorously investigated for various Markovian and non-Markovian channels for the two-qubit X states with specific attention to the maximum and minimum attainable coherence and usefulness of these states in performing quantum teleportation in noisy environment. The investigation has revealed that under both dephasing and dissipative type noises the maximally entangled mixed states and Werner states lose their form and usefulness. However, maximally non-local mixed states (MNMSs) lose their identity in dissipative noise only. Thus, MNMSs are established to be useful in teleporting a qubit with fidelity greater than the classical limit in the presence of dephasing noise. MNMSs also remain useful for device independent quantum key distribution in this case as they still violate Bell’s inequality. In the presence of noise, coherence measured by relative entropy of coherence is found to fall faster than the same measured using \(l_1\) norm of coherence. Further, information back-flow from the environment to the system is observed over non-Markovian channels which leads to revival in coherence. Additionally, sequential interaction of two qubits with the same environment is found to result in correlated noise on both qubits, and coherence is observed to be frozen in this case under dephasing channel. Under the effect of Markovian and non-Markovian dephasing channels studied here, we observed that MNMSs have maximum relative coherence, i.e. they have the maximum amount of \(l_1\) norm of coherence among the states with the same amount of relative entropy of coherence. However, this feature is not visible in any X state evolving over dissipative channels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)
Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)
Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Hu, M.-L., Hu, X., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)
Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)
Gauger, E.M., Rieper, E., Morton, J.J.L., Benjamin, S.C., Vedral, V.: Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011)
Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 0121118 (2015)
Venugopalan, A., Mishra, S., Qureshi, T.: Monitoring decoherence via measurement of quantum coherence. Phys. A 516, 308 (2019)
Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multipath interference. Phys. Rev. A 100, 042122 (2019)
Mishra, S., Thapliyal, K., Pathak, A., Venugopalan, A.: Comparing coherence measures for X states: can quantum states be ordered based on quantum coherence? Quantum Inf Process. 18, 295 (2019)
Svozilík, J., Vallés, A., Peřina, J., Jr., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)
Tan, K.C., Volkoff, T., Kwon, H., Jeong, H.: Quantifying the coherence between coherent states. Phys. Rev. Lett. 119, 190405 (2017)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inform. Comput. 7, 459 (2007)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)
Quesada, N., Al-Qasimi, A., James, D.F.V.: Quantum properties and dynamics of X states. J. Mod. Opt. 59, 1322 (2012)
Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)
Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)
Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)
Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)
Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)
Mendonça, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79 (2014)
Peters, N.A., Altepeter, J.B., Branning, D.A., Jeffrey, E.R., Wei, T.C., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)
Barbieri, M., De Martini, F., Di Nepi, G., Mataloni, P.: Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92, 177901 (2004)
Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)
Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)
Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)
Agarwal, G.S., Kapale, K.T.: Generation of Werner states via collective decay of coherently driven atoms. Phys. Rev. A 73, 022315 (2006)
Rau, A.R.P.: Manipulating two-spin coherences and qubit pairs. Phys. Rev. A 61, 032301 (2000)
Balthazar, W.F., Braga, D.G., Lamego, V.S., Passos, M.M., Huguenin, J.A.: Spin-orbit X states. Phys. Rev. A 103, 022411 (2021)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)
Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)
Kraus, K.: General state changes in quantum theory. Ann. Phys. 64, 311 (1971)
Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)
Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)
Ban, M.: Decoherence of quantum systems sequentially interacting with a common environment. Phys. Rev. A 99, 012116 (2019)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Guo, Y.N., Tian, Q.L., Zeng, K.: Quantum coherence of two-qubit over quantum channels with memory. Quantum Inf. Process. 16, 310 (2017)
Liu, C.L., Guo, Y.Q., Tong, D.M.: Enhancing coherence of a state by stochastic strictly incoherent operations. Phys. Rev. A 96, 062325 (2017)
Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)
Radhakrishnan, C., Lü, Z., Jing, J., Byrnes, T.: Dynamics of quantum coherence in a spin-star system: bipartite initial state and coherence distribution. Phys. Rev. A 100, 042333 (2019)
Young, J.D., Auyuanet, A.: Entanglement-Coherence and Discord-Coherence analytical relations for X states. Quantum Inf. Process. 19, 398 (2020)
Song, Y., Wang, Y., Tang, H., Zhao, Z.: Evolution of relative entropy of coherence for two Qubits states. Int. J. Theor. Phys. 59, 873 (2020)
Zhao, M.J., Ma, T., Wang, Z., Fei, S.M., Pereira, R.: Coherence concurrence for X states. Quantum Inf. Process. 19, 104 (2020)
Wang, Y.S., Wang, D., Ye, L.: How stochastic strictly incoherent operations affect coherence in decoherence channels. Int. J. Theor. Phys. 58, 3667 (2019)
Luo, S., Sun, Y.: Average versus maximal coherence. Phys. Lett. A 383, 2869 (2019)
Jiang, Z., Zhang, T., Huang, X., Fei, S.M.: Trade-off relations of l1-norm coherence for multipartite systems. Quantum Inf. Process. 19, 92 (2020)
Zhang, C., Bromley, T.R., Huang, Y.F., Cao, H., Lv, W.M., Liu, B.H., Li, C.F., Guo, G.C., Cianciaruso, M., Adesso, G.: Demonstrating quantum coherence and metrology that is resilient to transversal noise. Phys. Rev. Lett. 123, 180504 (2019)
Cai, X.: Quantum dephasing induced by non-Markovian random telegraph noise. Sci. Rep. 10, 88 (2020)
Naikoo, J., Banerjee, S.: Coherence-based measure of quantumness in (non-) Markovian channels. Quantum Inf. Process. 19, 29 (2020)
Naikoo, J., Banerjee, S., Chandrashekar, C.M.: Non-Markovian channel from the reduced dynamics of a coin in a quantum walk. Phys. Rev. A 102, 062209 (2020)
Naikoo, J., Dutta, S., Banerjee, S.: Facets of quantum information under non-Markovian evolution. Phys. Rev. A 99, 042128 (2019)
Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44, 2478 (2019)
Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1–12 (2016)
He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)
Rivas, Á.: Refined weak-coupling limit: coherence, entanglement, and non-Markovianity. Phys. Rev. A 95, 042104 (2017)
Bhattacharya, S., Banerjee, S., Pati, A.K.: Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf. Process. 17, 1–30 (2018)
Lostaglio, M., Korzekwa, K., Milne, A.: Markovian evolution of quantum coherence under symmetric dynamics. Phys. Rev. A 96, 032109 (2017)
Tamascelli, D., Smirne, A., Lim, J., Huelga, S.F., Plenio, M.B.: Efficient simulation of finite-temperature open quantum systems. Phys. Rev. Lett. 123, 090402 (2019)
Shammah, N., Ahmed, S., Lambert, N., De Liberato, S., Nori, F.: Open quantum systems with local and collective incoherent processes: efficient numerical simulations using permutational invariance. Phys. Rev. A 98, 063815 (2018)
Mascherpa, F., Smirne, A., Somoza, A.D., Fernndez-Acebal, P., Donadi, S.: Optimized auxiliary oscillators for the simulation of general open quantum systems. Phys. Rev. A 101, 052108 (2020)
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2016)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)
Shahbeigi, F., Akhtarshenas, S.J.: Quantumness of quantum channels. Phys. Rev. A 98, 042313 (2018)
Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)
Rossatto, D.Z., Pires, D.P., de Paula, F.M., de SáNeto, O.P.: Quantum coherence and speed limit in the mean-field Dicke model of superradiance. Phys. Rev. A 102, 053716 (2020)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Macchiavello, C., Massimo, P.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)
Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A 98, 032328 (2018)
Daffer, S., Wódkiewicz, K., Cresser, J.D., McIver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)
Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25, 1850014 (2018)
Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 15049 (2020)
An, N.B., Kim, J.: Finite-time and infinite-time disentanglement of multipartite Greenberger-Horne-Zeilinger-type states under the collective action of different types of noise. Phys. Rev. A 79, 022303 (2009)
Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)
Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)
Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A.: Wootters WK : Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)
Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)
Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21 (1996)
Hu, M.L.: Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states. Quantum Inf. Process. 12, 229 (2013)
Acknowledgements
AP and SM acknowledge the support from the QUEST scheme of Interdisciplinary Cyber Physical Systems (ICPS) program of the Department of Science and Technology (DST), India (Grant No.: DST/ICPS/QuST/Theme-1/2019/14). KT acknowledges GA ČR (Project No. 18-22102S) and support from ERDF/ESF project ‘Nanotechnologies for Future’ (CZ.02.1.01/0.0/0.0/16_019/0000754).
Author information
Authors and Affiliations
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mishra, S., Thapliyal, K. & Pathak, A. Attainable and usable coherence in X states over Markovian and non-Markovian channels. Quantum Inf Process 21, 70 (2022). https://doi.org/10.1007/s11128-021-03408-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03408-2