[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Attainable and usable coherence in X states over Markovian and non-Markovian channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The relations between the resource theoretic measures of quantum coherence are rigorously investigated for various Markovian and non-Markovian channels for the two-qubit X states with specific attention to the maximum and minimum attainable coherence and usefulness of these states in performing quantum teleportation in noisy environment. The investigation has revealed that under both dephasing and dissipative type noises the maximally entangled mixed states and Werner states lose their form and usefulness. However, maximally non-local mixed states (MNMSs) lose their identity in dissipative noise only. Thus, MNMSs are established to be useful in teleporting a qubit with fidelity greater than the classical limit in the presence of dephasing noise. MNMSs also remain useful for device independent quantum key distribution in this case as they still violate Bell’s inequality. In the presence of noise, coherence measured by relative entropy of coherence is found to fall faster than the same measured using \(l_1\) norm of coherence. Further, information back-flow from the environment to the system is observed over non-Markovian channels which leads to revival in coherence. Additionally, sequential interaction of two qubits with the same environment is found to result in correlated noise on both qubits, and coherence is observed to be frozen in this case under dephasing channel. Under the effect of Markovian and non-Markovian dephasing channels studied here, we observed that MNMSs have maximum relative coherence, i.e. they have the maximum amount of \(l_1\) norm of coherence among the states with the same amount of relative entropy of coherence. However, this feature is not visible in any X state evolving over dissipative channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  2. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hu, M.-L., Hu, X., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  7. Gauger, E.M., Rieper, E., Morton, J.J.L., Benjamin, S.C., Vedral, V.: Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011)

    Article  ADS  Google Scholar 

  8. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  9. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  11. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 0121118 (2015)

    Article  Google Scholar 

  12. Venugopalan, A., Mishra, S., Qureshi, T.: Monitoring decoherence via measurement of quantum coherence. Phys. A 516, 308 (2019)

    Article  MathSciNet  Google Scholar 

  13. Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multipath interference. Phys. Rev. A 100, 042122 (2019)

    Article  ADS  Google Scholar 

  14. Mishra, S., Thapliyal, K., Pathak, A., Venugopalan, A.: Comparing coherence measures for X states: can quantum states be ordered based on quantum coherence? Quantum Inf Process. 18, 295 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Svozilík, J., Vallés, A., Peřina, J., Jr., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)

    Article  ADS  Google Scholar 

  16. Tan, K.C., Volkoff, T., Kwon, H., Jeong, H.: Quantifying the coherence between coherent states. Phys. Rev. Lett. 119, 190405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  18. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inform. Comput. 7, 459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Quesada, N., Al-Qasimi, A., James, D.F.V.: Quantum properties and dynamics of X states. J. Mod. Opt. 59, 1322 (2012)

    Article  ADS  Google Scholar 

  21. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  22. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  24. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)

    Article  ADS  Google Scholar 

  25. Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  26. Mendonça, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Peters, N.A., Altepeter, J.B., Branning, D.A., Jeffrey, E.R., Wei, T.C., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

    Article  ADS  Google Scholar 

  28. Barbieri, M., De Martini, F., Di Nepi, G., Mataloni, P.: Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92, 177901 (2004)

    Article  ADS  Google Scholar 

  29. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  30. Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)

    Article  ADS  Google Scholar 

  31. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Agarwal, G.S., Kapale, K.T.: Generation of Werner states via collective decay of coherently driven atoms. Phys. Rev. A 73, 022315 (2006)

    Article  ADS  Google Scholar 

  33. Rau, A.R.P.: Manipulating two-spin coherences and qubit pairs. Phys. Rev. A 61, 032301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  34. Balthazar, W.F., Braga, D.G., Lamego, V.S., Passos, M.M., Huguenin, J.A.: Spin-orbit X states. Phys. Rev. A 103, 022411 (2021)

    Article  ADS  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  37. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  38. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64, 311 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  40. Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)

    Article  ADS  Google Scholar 

  41. Ban, M.: Decoherence of quantum systems sequentially interacting with a common environment. Phys. Rev. A 99, 012116 (2019)

    Article  ADS  Google Scholar 

  42. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  43. Guo, Y.N., Tian, Q.L., Zeng, K.: Quantum coherence of two-qubit over quantum channels with memory. Quantum Inf. Process. 16, 310 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Liu, C.L., Guo, Y.Q., Tong, D.M.: Enhancing coherence of a state by stochastic strictly incoherent operations. Phys. Rev. A 96, 062325 (2017)

    Article  ADS  Google Scholar 

  45. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Radhakrishnan, C., Lü, Z., Jing, J., Byrnes, T.: Dynamics of quantum coherence in a spin-star system: bipartite initial state and coherence distribution. Phys. Rev. A 100, 042333 (2019)

    Article  ADS  Google Scholar 

  47. Young, J.D., Auyuanet, A.: Entanglement-Coherence and Discord-Coherence analytical relations for X states. Quantum Inf. Process. 19, 398 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  48. Song, Y., Wang, Y., Tang, H., Zhao, Z.: Evolution of relative entropy of coherence for two Qubits states. Int. J. Theor. Phys. 59, 873 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, M.J., Ma, T., Wang, Z., Fei, S.M., Pereira, R.: Coherence concurrence for X states. Quantum Inf. Process. 19, 104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wang, Y.S., Wang, D., Ye, L.: How stochastic strictly incoherent operations affect coherence in decoherence channels. Int. J. Theor. Phys. 58, 3667 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Luo, S., Sun, Y.: Average versus maximal coherence. Phys. Lett. A 383, 2869 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Jiang, Z., Zhang, T., Huang, X., Fei, S.M.: Trade-off relations of l1-norm coherence for multipartite systems. Quantum Inf. Process. 19, 92 (2020)

    Article  ADS  Google Scholar 

  53. Zhang, C., Bromley, T.R., Huang, Y.F., Cao, H., Lv, W.M., Liu, B.H., Li, C.F., Guo, G.C., Cianciaruso, M., Adesso, G.: Demonstrating quantum coherence and metrology that is resilient to transversal noise. Phys. Rev. Lett. 123, 180504 (2019)

    Article  ADS  Google Scholar 

  54. Cai, X.: Quantum dephasing induced by non-Markovian random telegraph noise. Sci. Rep. 10, 88 (2020)

    Article  ADS  Google Scholar 

  55. Naikoo, J., Banerjee, S.: Coherence-based measure of quantumness in (non-) Markovian channels. Quantum Inf. Process. 19, 29 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  56. Naikoo, J., Banerjee, S., Chandrashekar, C.M.: Non-Markovian channel from the reduced dynamics of a coin in a quantum walk. Phys. Rev. A 102, 062209 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Naikoo, J., Dutta, S., Banerjee, S.: Facets of quantum information under non-Markovian evolution. Phys. Rev. A 99, 042128 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  58. Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44, 2478 (2019)

    Article  ADS  Google Scholar 

  59. Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1–12 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)

    Article  ADS  Google Scholar 

  61. Rivas, Á.: Refined weak-coupling limit: coherence, entanglement, and non-Markovianity. Phys. Rev. A 95, 042104 (2017)

    Article  ADS  Google Scholar 

  62. Bhattacharya, S., Banerjee, S., Pati, A.K.: Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf. Process. 17, 1–30 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Lostaglio, M., Korzekwa, K., Milne, A.: Markovian evolution of quantum coherence under symmetric dynamics. Phys. Rev. A 96, 032109 (2017)

    Article  ADS  Google Scholar 

  64. Tamascelli, D., Smirne, A., Lim, J., Huelga, S.F., Plenio, M.B.: Efficient simulation of finite-temperature open quantum systems. Phys. Rev. Lett. 123, 090402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  65. Shammah, N., Ahmed, S., Lambert, N., De Liberato, S., Nori, F.: Open quantum systems with local and collective incoherent processes: efficient numerical simulations using permutational invariance. Phys. Rev. A 98, 063815 (2018)

    Article  ADS  Google Scholar 

  66. Mascherpa, F., Smirne, A., Somoza, A.D., Fernndez-Acebal, P., Donadi, S.: Optimized auxiliary oscillators for the simulation of general open quantum systems. Phys. Rev. A 101, 052108 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  67. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  68. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2016)

    Article  ADS  Google Scholar 

  69. Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  70. Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  71. Shahbeigi, F., Akhtarshenas, S.J.: Quantumness of quantum channels. Phys. Rev. A 98, 042313 (2018)

    Article  ADS  Google Scholar 

  72. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  73. Rossatto, D.Z., Pires, D.P., de Paula, F.M., de SáNeto, O.P.: Quantum coherence and speed limit in the mean-field Dicke model of superradiance. Phys. Rev. A 102, 053716 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  74. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  75. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  76. Macchiavello, C., Massimo, P.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  77. Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A 98, 032328 (2018)

    Article  ADS  Google Scholar 

  78. Daffer, S., Wódkiewicz, K., Cresser, J.D., McIver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)

    Article  ADS  Google Scholar 

  79. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25, 1850014 (2018)

    Article  MATH  Google Scholar 

  80. Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 15049 (2020)

    Article  Google Scholar 

  81. An, N.B., Kim, J.: Finite-time and infinite-time disentanglement of multipartite Greenberger-Horne-Zeilinger-type states under the collective action of different types of noise. Phys. Rev. A 79, 022303 (2009)

    Article  ADS  Google Scholar 

  82. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  83. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  84. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A.: Wootters WK : Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  87. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Hu, M.L.: Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states. Quantum Inf. Process. 12, 229 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AP and SM acknowledge the support from the QUEST scheme of Interdisciplinary Cyber Physical Systems (ICPS) program of the Department of Science and Technology (DST), India (Grant No.: DST/ICPS/QuST/Theme-1/2019/14). KT acknowledges GA ČR (Project No. 18-22102S) and support from ERDF/ESF project ‘Nanotechnologies for Future’ (CZ.02.1.01/0.0/0.0/16_019/0000754).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Thapliyal, K. & Pathak, A. Attainable and usable coherence in X states over Markovian and non-Markovian channels. Quantum Inf Process 21, 70 (2022). https://doi.org/10.1007/s11128-021-03408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03408-2

Keywords

Navigation