[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Secure two-party integer comparison protocol without any third party

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secure two-party integer comparison is a primitive problem of secure multiparty computations that enables two parties to decide whether \(x>y\) without disclosing anything about \(x\) and \(y\), where \(x\) and \(y\) are two integers held privately by two parties, respectively. This paper presents a novel and efficient quantum protocol for secure two-party integer comparison without any third party. This protocol tactfully adopts the ideas of quantum private query so that it achieves an exponential reduction in communication complexity because it only requires \(O(1)\) communication cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yao, A.: Protocols for secure computations. In: Proceedings of 23th Annual Symposium on Foundations of Computer Science (FOCS '82), Chicago, USA, pp. 160–164. IEEE Computer Society Press, New York (1982)

  2. Garay, J., Schoenmakers, B., Villagas, J.: Practical and secure solutions for integer comparison. In: Proceedings of 10th International Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, LNCS, vol. 4450, pp. 330–342. Springer, Berlin (2007)

  3. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Cryptogr. 1(1), 22–31 (2008)

    Article  MathSciNet  Google Scholar 

  4. Damgard, I., Geisler, M., Kroigard, M.: A correction to ‘efficient and secure comparison for on-line auctions.’ Int. J. Appl. Cryptogr. 1(4), 323–324 (2009)

    Article  MathSciNet  Google Scholar 

  5. Katti, R.S., Abaei, C.: Secure comparison without explicit XOR (2012). arXiv:1204.2854

  6. Shor, P.W.: Algorithms for quantum computation: discrete Logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)

  8. Bennett, C.H., Brassard, G.: Quantum cryptography public-key distribution and tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  9. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  10. Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A 76, 062308 (2007)

    Article  ADS  Google Scholar 

  11. Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum protocols for classical two-party computation. Phys. Rev. Lett. 109, 160501 (2012)

    Article  ADS  Google Scholar 

  12. Crepeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computing. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC’02), Montreal, QC, Canada, pp. 643–652. ACM, New York (2002)

  13. Ben-or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Washington, DC, USA. IEEE Computer Society, New York, pp. 249–260 (2006)

  14. Unruh, D.: Universally composable quantum multi-party computation. In: Proceedings of Advances in Cryptology—EUROCRYPT 2010, Riviera, French, LNCS, vol. 6110, pp. 486–505. Springer, Berlin (2010)

  15. Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., et al.: Quantum-secured blockchain. Quantum Sci. Technol. 3(3), 035004 (2018)

    Article  ADS  Google Scholar 

  16. Shi, R.H., Zhang, M.: Privacy-preserving quantum sealed-bid auction based on Grover’s search algorithm. Sci. Rep. 9, 7626 (2019)

    Article  ADS  Google Scholar 

  17. Vaccaro, J.A., Spring, J., Chefles, A.: “Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  18. Chen, S.Y., Yoo, S.: Federated quantum machine learning. arXiv:2103.12010 (2021)

  19. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    Article  ADS  Google Scholar 

  21. Shi, R.H., Mu, Y., Zhong, H., Zhang, S.: Comment on “Secure quantum private information retrieval using phase-encoded queries.” Phys. Rev. A 94(6), 066301 (2016)

    Article  ADS  Google Scholar 

  22. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Proceedings of International Colloquium on Automata, languages, and Programming (ICALP), Lecture Notes in Computer Science, vol. 1443, pp. 820–831, Springer, Berlin (1998)

  23. Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370–371, 147–158 (2016)

    Article  Google Scholar 

  24. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hong, F., Xiang, Y., Zhu, Z., et al.: Robust quantum random access memory. Phys. Rev. A 86(1), 010306(R) (2012)

    Article  ADS  Google Scholar 

  26. Jiang, N., Pu, Y.-F., Chang, W., et al.: Experimental realization of 105-qubit random access quantum memory. NPJ Quantum Inf. 2, 28 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61772001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rh., Liu, B. & Zhang, M. Secure two-party integer comparison protocol without any third party. Quantum Inf Process 20, 402 (2021). https://doi.org/10.1007/s11128-021-03344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03344-1

Keywords

Navigation