Abstract
Secure two-party integer comparison is a primitive problem of secure multiparty computations that enables two parties to decide whether \(x>y\) without disclosing anything about \(x\) and \(y\), where \(x\) and \(y\) are two integers held privately by two parties, respectively. This paper presents a novel and efficient quantum protocol for secure two-party integer comparison without any third party. This protocol tactfully adopts the ideas of quantum private query so that it achieves an exponential reduction in communication complexity because it only requires \(O(1)\) communication cost.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yao, A.: Protocols for secure computations. In: Proceedings of 23th Annual Symposium on Foundations of Computer Science (FOCS '82), Chicago, USA, pp. 160–164. IEEE Computer Society Press, New York (1982)
Garay, J., Schoenmakers, B., Villagas, J.: Practical and secure solutions for integer comparison. In: Proceedings of 10th International Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, LNCS, vol. 4450, pp. 330–342. Springer, Berlin (2007)
Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Cryptogr. 1(1), 22–31 (2008)
Damgard, I., Geisler, M., Kroigard, M.: A correction to ‘efficient and secure comparison for on-line auctions.’ Int. J. Appl. Cryptogr. 1(4), 323–324 (2009)
Katti, R.S., Abaei, C.: Secure comparison without explicit XOR (2012). arXiv:1204.2854
Shor, P.W.: Algorithms for quantum computation: discrete Logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)
Bennett, C.H., Brassard, G.: Quantum cryptography public-key distribution and tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)
Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)
Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A 76, 062308 (2007)
Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum protocols for classical two-party computation. Phys. Rev. Lett. 109, 160501 (2012)
Crepeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computing. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC’02), Montreal, QC, Canada, pp. 643–652. ACM, New York (2002)
Ben-or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Washington, DC, USA. IEEE Computer Society, New York, pp. 249–260 (2006)
Unruh, D.: Universally composable quantum multi-party computation. In: Proceedings of Advances in Cryptology—EUROCRYPT 2010, Riviera, French, LNCS, vol. 6110, pp. 486–505. Springer, Berlin (2010)
Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., et al.: Quantum-secured blockchain. Quantum Sci. Technol. 3(3), 035004 (2018)
Shi, R.H., Zhang, M.: Privacy-preserving quantum sealed-bid auction based on Grover’s search algorithm. Sci. Rep. 9, 7626 (2019)
Vaccaro, J.A., Spring, J., Chefles, A.: “Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)
Chen, S.Y., Yoo, S.: Federated quantum machine learning. arXiv:2103.12010 (2021)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)
Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)
Shi, R.H., Mu, Y., Zhong, H., Zhang, S.: Comment on “Secure quantum private information retrieval using phase-encoded queries.” Phys. Rev. A 94(6), 066301 (2016)
Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Proceedings of International Colloquium on Automata, languages, and Programming (ICALP), Lecture Notes in Computer Science, vol. 1443, pp. 820–831, Springer, Berlin (1998)
Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370–371, 147–158 (2016)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)
Hong, F., Xiang, Y., Zhu, Z., et al.: Robust quantum random access memory. Phys. Rev. A 86(1), 010306(R) (2012)
Jiang, N., Pu, Y.-F., Chang, W., et al.: Experimental realization of 105-qubit random access quantum memory. NPJ Quantum Inf. 2, 28 (2019)
Acknowledgements
This work was supported by National Natural Science Foundation of China (No. 61772001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shi, Rh., Liu, B. & Zhang, M. Secure two-party integer comparison protocol without any third party. Quantum Inf Process 20, 402 (2021). https://doi.org/10.1007/s11128-021-03344-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03344-1