[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quantum information scrambling and entanglement in bipartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Investigating the influence of quantum information (QI) scrambling on quantum correlations in a physical system is an interesting problem. In this article, we establish the mathematical connections among the quantifiers known as quantum information scrambling, Uhlmann fidelity, Bures metric and bipartite concurrence. We study these connections via four-point out-of-time-order correlation function used for quantum information scrambling. Further, we study the dynamics of all the quantifiers and investigate the influence of QI scrambling on entanglement in two qubits prepared in Bell states. We also investigate the QI scrambling and entanglement balancing points in Bell states under Ising Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sekino, Y., Susskind, L.: Fast scramblers. JHEP 0810, 065 (2008)

    Google Scholar 

  3. Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture. JHEP 1304, 022 (2013)

    Google Scholar 

  4. Landsman, K.A., Figgatt, C., Schuster, T., Linke, N.M., Yoshida, B., Yao, N.Y., Monroe, C.: Verified quantum information scrambling. Nature 567, 61 (2019)

    Article  ADS  Google Scholar 

  5. Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4, 37 (2016)

    Article  Google Scholar 

  6. Cencini, M., Cecconi, F., Vulpani, A.: From Simple Models to Complex Systems. World Scientific (2010)

  7. Ghys, E.: The Butterfly Effect. In: Cho, S.J. (ed.) The Proceedings of the 12th International Congress on Mathematical Education. Springer, Cham, pp. 19–39 (2015)

  8. Haake, F.: Quantum Signatures of Chaos. Springer Series in Synergetics (2010)

  9. Stokmann, H.J.: Quantum Chaos: An Introduction. Cambridge University Press (1999)

  10. Peres, A.: Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jalabert, R.A., Pastawski, H.M.: Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001)

    Article  ADS  Google Scholar 

  12. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kitaev, Hidden A.: Correlations in the Hawking Radiation and Thermal Noise. Talk at the 2015 Breakthrough Prize Fundamental Physics Symposium, Nov. 10, 2014 (2014). https://breakthroughprize.org/Laureates/1/L3

  14. Larkin, A., Ovchinnikov, Y.N: Quasiclassical Method in the Theory of Superconductivity. Sov. Phys. JhETP 28(6), 1200 (1969)

  15. Yoshida, B., Yao, N.Y.: Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019)

    Google Scholar 

  16. Roberts, D.A., Stanford, D.: Diagnosing chaos using Four-point functions in two-dimensional conformal field theory. Phys. Rev. Lett. 115, 131603 (2015)

    Article  ADS  Google Scholar 

  17. Dóra, B., Moessner, R.: Out-of-time-ordered density correlators in Luttinger liquids. Phys. Rev. Lett. 119, 026802 (2017)

    Article  ADS  Google Scholar 

  18. Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in short-range and long-range hard-core boson models and in the Luttinger-liquid model. Phys. Rev. B 98, 134305 (2018)

    Article  ADS  Google Scholar 

  19. Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in a quantum Ising chain. Phys. Rev. B 97, 144304 (2018)

    Article  ADS  Google Scholar 

  20. Kos, P., Prosen, T.: Time-dependent correlation functions in open quadratic fermionic systems, time-dependent correlation functions in open quadratic fermionic systems. J. Stat. Mech. 2017, 123103 (2017)

    Article  Google Scholar 

  21. Riddell, J., Sørensen, E.S.: Out-of-time ordered correlators and entanglement growth in the random-field XX spin chain. Phys. Rev. B 99, 054205 (2019)

    Article  ADS  Google Scholar 

  22. Swingle, B.: Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988 (2018)

    Article  Google Scholar 

  23. Achilles, R., Bonfiglioli, A.: The early proofs of the theorem of Campbell, Baker, Hausdorff and Dynkin. Arch. Hist. Exact Sci. 66, 295 (2012)

    Article  MathSciNet  Google Scholar 

  24. Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra: The Theorem of Campbell. Lecture Notes in Mathematics, Springer, Berlin, Baker, Hausdorff and Dynkin (2012)

    Book  Google Scholar 

  25. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  26. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  27. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Uhlmann, A.: Transition probability (fidelity) and its relatives. Found. Phys. 41, 288 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter qubit-qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  ADS  Google Scholar 

  31. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii-Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum. Info. Process. 14, 1361 (2015)

    Article  ADS  Google Scholar 

  32. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit-qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)

    Article  ADS  Google Scholar 

  33. Sharma, K.K., Gerdt, V.P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theor. Phys. 59, 403 (2020)

    Article  MathSciNet  Google Scholar 

  34. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite \(w^{\ast }\)-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MathSciNet  MATH  Google Scholar 

  35. Sych, D., Leuchs, G.: A complete basis of generalized Bell states. New J. Phys. 11, 013006 (2009)

    Article  ADS  Google Scholar 

  36. Kleinmann, D., Karpenmann, H., Meyer, T., Bruss, D.: Physical purification of quantum states. Phys. Rev. A 73, 062309 (2006)

    Article  ADS  Google Scholar 

  37. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D. 23, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K., Gerdt, V.P. Quantum information scrambling and entanglement in bipartite quantum states. Quantum Inf Process 20, 195 (2021). https://doi.org/10.1007/s11128-021-03138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03138-5

Keywords

Navigation