Abstract
Investigating the influence of quantum information (QI) scrambling on quantum correlations in a physical system is an interesting problem. In this article, we establish the mathematical connections among the quantifiers known as quantum information scrambling, Uhlmann fidelity, Bures metric and bipartite concurrence. We study these connections via four-point out-of-time-order correlation function used for quantum information scrambling. Further, we study the dynamics of all the quantifiers and investigate the influence of QI scrambling on entanglement in two qubits prepared in Bell states. We also investigate the QI scrambling and entanglement balancing points in Bell states under Ising Hamiltonian.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007)
Sekino, Y., Susskind, L.: Fast scramblers. JHEP 0810, 065 (2008)
Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture. JHEP 1304, 022 (2013)
Landsman, K.A., Figgatt, C., Schuster, T., Linke, N.M., Yoshida, B., Yao, N.Y., Monroe, C.: Verified quantum information scrambling. Nature 567, 61 (2019)
Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4, 37 (2016)
Cencini, M., Cecconi, F., Vulpani, A.: From Simple Models to Complex Systems. World Scientific (2010)
Ghys, E.: The Butterfly Effect. In: Cho, S.J. (ed.) The Proceedings of the 12th International Congress on Mathematical Education. Springer, Cham, pp. 19–39 (2015)
Haake, F.: Quantum Signatures of Chaos. Springer Series in Synergetics (2010)
Stokmann, H.J.: Quantum Chaos: An Introduction. Cambridge University Press (1999)
Peres, A.: Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610 (1984)
Jalabert, R.A., Pastawski, H.M.: Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001)
Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)
Kitaev, Hidden A.: Correlations in the Hawking Radiation and Thermal Noise. Talk at the 2015 Breakthrough Prize Fundamental Physics Symposium, Nov. 10, 2014 (2014). https://breakthroughprize.org/Laureates/1/L3
Larkin, A., Ovchinnikov, Y.N: Quasiclassical Method in the Theory of Superconductivity. Sov. Phys. JhETP 28(6), 1200 (1969)
Yoshida, B., Yao, N.Y.: Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019)
Roberts, D.A., Stanford, D.: Diagnosing chaos using Four-point functions in two-dimensional conformal field theory. Phys. Rev. Lett. 115, 131603 (2015)
Dóra, B., Moessner, R.: Out-of-time-ordered density correlators in Luttinger liquids. Phys. Rev. Lett. 119, 026802 (2017)
Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in short-range and long-range hard-core boson models and in the Luttinger-liquid model. Phys. Rev. B 98, 134305 (2018)
Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in a quantum Ising chain. Phys. Rev. B 97, 144304 (2018)
Kos, P., Prosen, T.: Time-dependent correlation functions in open quadratic fermionic systems, time-dependent correlation functions in open quadratic fermionic systems. J. Stat. Mech. 2017, 123103 (2017)
Riddell, J., Sørensen, E.S.: Out-of-time ordered correlators and entanglement growth in the random-field XX spin chain. Phys. Rev. B 99, 054205 (2019)
Swingle, B.: Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988 (2018)
Achilles, R., Bonfiglioli, A.: The early proofs of the theorem of Campbell, Baker, Hausdorff and Dynkin. Arch. Hist. Exact Sci. 66, 295 (2012)
Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra: The Theorem of Campbell. Lecture Notes in Mathematics, Springer, Berlin, Baker, Hausdorff and Dynkin (2012)
Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Uhlmann, A.: Transition probability (fidelity) and its relatives. Found. Phys. 41, 288 (2011)
Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)
Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter qubit-qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)
Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii-Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum. Info. Process. 14, 1361 (2015)
Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit-qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)
Sharma, K.K., Gerdt, V.P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theor. Phys. 59, 403 (2020)
Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite \(w^{\ast }\)-algebras. Trans. Am. Math. Soc. 135, 199 (1969)
Sych, D., Leuchs, G.: A complete basis of generalized Bell states. New J. Phys. 11, 013006 (2009)
Kleinmann, D., Karpenmann, H., Meyer, T., Bruss, D.: Physical purification of quantum states. Phys. Rev. A 73, 062309 (2006)
Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D. 23, 357 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sharma, K.K., Gerdt, V.P. Quantum information scrambling and entanglement in bipartite quantum states. Quantum Inf Process 20, 195 (2021). https://doi.org/10.1007/s11128-021-03138-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03138-5