[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantum \(\alpha \)-fidelity of unitary orbits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The extremum values of quantum \(\alpha \)-fidelity under unitary orbits of quantum states are explicitly derived by applying rearrangement inequalities, matrix trace inequalities, and theory of majorization. Furthermore, the \(\alpha \)-fidelity is successfully verified to go through the whole closed interval, which works from the minimum value to the maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Uhlmann, A.: The transition probability in the state space of a \(*\)-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Liang, Y.C., Yeh, Y.H., Mendona, P., et al.: Quantum fidelity measures for mixed states. Reports on progress in physics. Phys. Soc. 82(7), 076001 (2019)

    Google Scholar 

  5. Rosset, D., Ferretti-Schbitz, R., Bancal, J.D., et al.: Imperfect measurement settings: implications for quantum state tomography and entanglement witnesses. Phys. Rev. A 86(6), 062325 (2012)

    Article  ADS  Google Scholar 

  6. Gu, S.J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24(23), 4371–4458 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary Edition): Introduction and Overview. Cambridge University Press, Cambridge, pp. 1–59 (2010)

  8. Zhang, L., Fei, S.M.: Quantum fidelity and relative entropy between unitary orbits. J. Phys. A Math. Theor. 47(5), 055301 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang, L., Chen, L., Bu, K.: Fidelity between one bipartite quantum state and another undergoing local unitary dynamics. Quantum Inf. Process. 14(12), 4715–4730 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dominique, S.: Quantum correlations and distinguishability of quantum states. J. Math. Phys. 55(7), 075211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spedalieri, G., Christian, W., Stefano, P.: A limit formula for the quantum fidelity. J. Phys. A Math. Theor. 46(2), 025304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Müller-Lennert, M., Dupuis, F., Szehr, O., et al.: On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Audenaert, K.M.R., Datta, N.: \(\alpha \)-z-Renyi relative entropies. J. Math. Phys. 56(2), 022202 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Thompson, C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6(11), 1812–1813 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  15. Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. Commun. Math. Phys. 352(1), 37–58 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Entropy Quantum 529(P73), 73–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Watrous, J.: Theory of Quantum Information. Lecture notes from Fall 2008. Institute for Quantum Computing. University of Waterloo, Canada (2008)

  18. Bhatia, R.: Matrix Analysis. Springer, New York (2011)

    MATH  Google Scholar 

  19. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  20. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Academic Press, New York (1979)

    MATH  Google Scholar 

  21. Jevtic, S., David, J., Terry, R.: Quantum mutual information along unitary orbits. Phys. Rev. A 85(5), 052121 (2012)

    Article  ADS  Google Scholar 

  22. So, W.: The high road to an exponential formula. Linear Algebra Appl. 379, 69–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer, Berlin (2012)

    Google Scholar 

  24. Conway, J.B.: A Course in Functional Analysis Graduate Texts in Mathematics, vol. 96. Springer, Berlin (1985)

    Book  Google Scholar 

  25. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 547–561 (1961)

Download references

Acknowledgements

We thank the anonymous referees for their useful comments. We also would like to thank professor Zhongjin Ruan, professor Marius Junge, Lin Zhang, Haojian Li, Yao Li for very helpful discussions and comments. This work is supported by National Natural Science Foundation of China (Grants Nos. 11771106 and 61871156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longsuo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yin, Z. & Li, L. Quantum \(\alpha \)-fidelity of unitary orbits. Quantum Inf Process 19, 307 (2020). https://doi.org/10.1007/s11128-020-02805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02805-3

Keywords

Navigation