Abstract
Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrect entropy estimations of the output random numbers. Recently, a novel quantum random number generation (QRNG) scheme, referred to as source-independent QRNG (SIQRNG), has attracted a lot of interest. The scheme can provide certified randomness by using untrusted and uncharacterized sources, under the assumption that the measurement devices are trusted. However, realistic devices inevitably feature imperfections. Here, we show that the output randomness of SIQRNG is compromised in the presence of detection imperfection , by constructing an attack based on a time-domain detection efficiency mismatch between two practical detectors. More importantly, we provide an unconditional security proof of SIQRNG that takes detection efficiency mismatch into account. In addition, we provide a parameter optimization method to effectively improve the final random number generation rate. Our work demonstrates that SIQRNG is highly practical and that randomness can be extracted even in the presence of a detection efficiency mismatch.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)
Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)
Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci Appl. 5, e16144 (2016)
Ma, X., Yuan, X., Cao, Z., Qi, B., Zhang, Z.: Quantum random number generation. Npj Quantum Inf. 2, 16021 (2016)
Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)
Dynes, J.F., Yuan, Z.L., Sharpe, A.W., Shields, A.J.: A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)
Wayne, M.A., Kwiat, P.G.: Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Express 18, 9351 (2010)
Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711 (2010)
Shen, Y., Tian, L., Zou, H.: Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A 81, 063814 (2010)
Symul, T., Assad, S.M., Lam, P.K.: Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103 (2011)
Jofre, M., Curty, M., Steinlechner, F., Anzolin, G., Torres, J.P., Mitchell, M.W., Pruneri, V.: True random numbers from amplified quantum vacuum. Opt. Express 19, 20665 (2011)
Shi, Y., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109, 041101 (2016)
Zhou, Q., Valivarthi, R., John, C., et al.: Practical quantum random number generator based on sampling vacuum fluctuations. arXiv:1703.00559 (2017)
Nie, Y.-Q., Zhang, H.-F., Zhang, Z., Wang, J., Ma, X., Zhang, J., Pan, J.-W.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104, 110 (2014)
Qi, B., Chi, Y.-M., Lo, H.-K., Qian, L.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Opt. Lett. 35, 312 (2010)
Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.-K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20, 12366 (2012)
Nie, Y.-Q., Huang, L., Liu, Y., Payne, F., Zhang, J., Pan, J.-W.: The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105 (2015)
Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., Mitchell, M.W.: Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. Phys. Rev. Lett. 115, 250403 (2015)
Zhang, X.-G., Nie, Y.-Q., Zhou, H., Liang, H., Ma, X., Zhang, J., Pan, J.-W.: Fully integrated 32 Gbps quantum random number generator with real-time extraction, Rev. Sci. Instrum. 87, 102 (2016)
Sun, S.-H., Xu, F.: Experimental study of a quantum random-number generator based on two independent lasers. Phys. Rev. A 96, 062314 (2017)
http://www.quantum-info.com; http://www.qutools.com; http://www.idquantique.com
Wei, K., Ma, H., Yang, X.J.: Feasible attack on detector-device-independent quantum key distribution. Opt. Soc. Am. B 34, 2185 (2017)
Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)
Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical 44, 095305 (2011)
Liu, Y., Yuan, X., Li, M.-H., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y.-H., Chen, L.-K., Li, H., Peng, T., Chen, Y.-A., Peng, C.-Z., Shi, S.-C., Wang, Z., You, L., Ma, X., Fan, J., Zhang, Q., Pan, J.-W.: High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole. Phys. Rev. Lett. 120, 010503 (2018)
Li, M.-H., Zhang, X., Liu, W.-Z., Zhao, S.-R., Bai, B., Liu, Y., Zhao, Q., Peng, Y., Zhang, J., Ma, X., Zhang, Q., Fan, J., Pan, J.-W.: Experimental realization of device-independent quantum randomness expansion. arXiv: 1902.07529 (2019)
Bierhorst, P., Knill, E., Glancy, S., Zhang, Y., Mink, A., Jordan, S., Rommal, A., Liu, Y.-K., Christensen, B., Nam, S.W., Stevens, M.J., Shalm, L.K.: Experimentally generated randomness certified by the impossibility of superluminal signals. Nature 556, 223 (2018)
Liu, Y., Zhao, Q., Li, M.-H., Guan, J.-Y., Zhang, Y., Bai, B., Zhang, W., Liu, W.-Z., Wu, C., Yuan, X., Li, H., Munro, W.J., Wang, Z., You, L., Zhang, J., Ma, X., Fan, J., Zhang, Q., Pan, J.-W.: Device-independent quantum random-number generation. Nature 562, 548 (2018)
Li, H.-W., Yin, Z.-Q., Wu, Y.-C., Zou, X.-B., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 034301 (2011)
Bowles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and qquantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112, 140407 (2014)
Zhu, C., Hongyi, Z., Xiongfeng, M.: Loss-tolerant measurement-device-independent quantum random number generation. New J. Phys. 17, 125011 (2015)
Ma, J., Hakande, A., Yuan, X., Ma, X.: Coherence as a resource for source-independent quantum random-number generation, Phys. Rev. A 99, 022328 (2019)
Lunghi, T., Brask, J.B., Lim, C.C.W., Lavigne, Q., Bowles, J., Martin, A., Zbinden, H., Brunner, N.: Self-Testing Quantum Random Number Generator. Phys. Rev. Lett. 114, 150501 (2015)
Xu, F., Shapiro, J.H., Wong, F.N.C.: Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica 3, 1266 (2016)
Nie, Y.-Q., Guan, J.-Y., Zhou, H., Zhang, Q., Ma, X., Zhang, J., Pan, J.-W.: Experimental measurement-device-independent quantum random-number generation. Phys. Rev. A 94, 060301 (2016)
Marangon, D.G., Vallone, G., Villoresi, P.: Source-Device-Independent Ultrafast Quantum Random Number Generation. Phys. Rev. Lett. 118, 060503 (2017)
Brask, J.B., Martin, A., Esposito, W., Houlmann, R., Bowles, Z.J., Zbinden, H., Brunner, N.: Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination. Phys. Rev. Applied 7, 054018 (2017)
Xu, B., Chen, Z., Li, Z., Yang, J., Su, Q., Huang, W., Zhang, Y., Guo, H.: High speed continuous variable source-independent quantum random number generation. Quantum. Sci. Technol. 4, 025013 (2019)
Smith, P.R., Marangon, D.G., Lucamarini, M., Yuan, Z.L., Shields, A.J.: Simple source device-independent continuous-variable quantum random number generator. Phys. Rev. A 99, 062326 (2019)
Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-Independent Quantum Random Number Generation. Phys. Rev. X 6, 011020 (2016)
Avesani, M., Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commum. 9, 5365 (2018)
Li, Y.-H., Han, X., Cao, Y., Yuan, X., Li, Z.-P., Guan, J.-Y., Yin, J., Zhang, Q., Ma, X., Peng, C.-Z., Pan, J.-W.: Quantum random number generation with uncharacterized laser and sunlight. Npj Quantum Inf. 5, 97 (2019)
Huang, A., Barz, S., Andersson, E., Makarov, V.: Implementation vulnerabilities in general quantum cryptography. New J. Phys. 20, 103016 (2018)
Li H-W, Wang S, Huang J-Z, Chen W, Yin Z-Q, Li F-Y, Zhou Z, Liu D, Zhang Y, Guo G-C, Bao W-S, Han Z-F: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)
Wei, K., Liu, H., Ma, H., Yang, X., Zhang, Y., Sun, Y., Xiao, J., Ji, Y.: Feasible attack on detector-device-independent quantum key distribution. Sci. Rep. 7, 449 (2017)
Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 002313 (2006)
Wei, K., Zhang, W., Tang, Y.-L., You, L., Xu, F.: Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch. Phys. Rev. A 100, 022325 (2019)
Sajeed S, Chaiwongkhot P, Bourgoin JP, Jennewein T, Lutkenhaus N, Makarov V: Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch Shihan. Phys. Rev. 91, 301 (2015)
Qi, B., Fred, F.C.-H., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quant. Inf. Comput. 7, 73 (2007)
Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 13 kilometres. Nature 526, 682 (2015)
Fung, C.-H.F., Tamaki, K., Qi, B., Lo, H.-K., Ma, X.: Security proof of quantum key distribution with detection efficiency mismatch. Quantum Info. Comput. 9, 131 (2009)
Ma, X., Xu, F., Xu, H., Tan, X., Qi, B., Lo, H.-K.: Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 87, 062327 (2013)
Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)
Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)
Henning, W., Harald, K., Markus, R., Martin, F., Sebastian, N., Harald, W.: Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13, 073024 (2011)
Bouda, J., Pivoluska, M., Plesch, M., Wilmott, C.: Weak randomness seriously limits the security of quantum key distribution. Phys. Rev. A 86, 062308 (2012)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4, 686 (2010)
Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)
Acknowledgements
We especially thank Dr. Yu-Huai Li for helpful discussions and Huihe Chen for English language revisions. This work was supported by the National Natural Science Foundation of China (No. 61705048 and No. 11865004) and the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ma, D., Wang, Y. & Wei, K. Practical source-independent quantum random number generation with detector efficiency mismatch. Quantum Inf Process 19, 384 (2020). https://doi.org/10.1007/s11128-020-02865-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02865-5