Abstract
All two-qubit states can be characterized visually by a quantum steering ellipsoid (QSE) inside the Bloch sphere, and their quantum resources (such as entanglement and discord) can be directly reflected via the geometric properties of QSE. In this work, we obtain QSE of bipartite Werner state interacting with a reservoir and probe the effects of the strong coupling regime and weak coupling regime on the maximal steered coherence (MSC) and concurrence in QSE framework. It is concluded that the MSC can be identified by the length of x or y semiaxis of ellipsoid. Meanwhile, the concurrence is related to the lengths of x and z semiaxes of QSE. The information can flow bidirectionally between the qubit system and the non-Markovian environment, which can induce the shrink, inflation and movement of ellipsoid in the Bloch sphere. On the contrary, due to the decoherence of information within Markovian environment, the QSE gradually shrinks and then eventually disappears in the north pole of Bloch sphere. Therefore, the evolutions of MSC and concurrence can be mapped by the aforementioned dynamics of QSE. The results also reveal that MSC and concurrence can be enhanced by suppressing the degradation of ellipsoid’s semiaxis. Moreover, we investigate the inflation of QSE under filtering operation and derive the condition of increasing MSC. An optimal operation strength of filtering operation is also obtained. It is worth noting that MSC and concurrence can be frozen by the optimal strength in the strong coupling and weak coupling regimes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)
Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)
Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)
Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555 (1935)
Quintino, M.T., Brunner, N.: Superactivation of quantum steering. Phys. Rev. A 94, 062123 (2016)
Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)
Cavalcanti, D., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Ribeiro, P.H.S., Walborn, S.P.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 6, 7941 (2015)
Armstrong, S., Wang, M., Teh, R.Y., Gong, Q.H., He, Q.Y., Janousele, J., Bachor, H.A., Reid, M.D., Lam, P.K.: Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11, 167 (2015)
Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)
Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A., Nori, F.: Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A 93, 062345 (2016)
Rutkowski, A., Buraczewski, A., Horodecki, P., Stobińska, M.: Quantum steering inequality with tolerance for measurement-setting errors: experimentally feasible signature of unbounded violation. Phys. Rev. Lett. 118, 020402 (2017)
Kaur, E., Wang, X.T., Wilde, M.M.: Conditional mutual information and quantum steering. Phys. Rev. A 96, 022332 (2017)
Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)
Milne, A., Jevtic, S., Jennings, D., Wiseman, H., Rudolph, T.: Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)
Milne, A., Jennings, D., Jevtic, S., Rudolph, T.: Quantum correlations of two-qubit states with one maximally mixed marginal. Phys. Rev. A 90, 024302 (2014)
Shi, M.J., Jiang, F.J., Sun, C.X., Du, J.F.: Geometric picture of quantum discord for two-qubit quantum states. New J. Phys. 13, 073016 (2011)
Shi, M.J., Sun, C.X., Jiang, F.J., Yan, X.H., Du, J.F.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)
Nguyen, H.C., Vu, T.: Nonseparability and steerability of two-qubit states from the geometry of steering outcomes. Phys. Rev. A 94, 012114 (2016)
Jevtic, S., Hall, M.J.W., Anderson, M.R., Zwierz, M., Wiseman, H.M.: Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32, A40 (2015)
Quan, Q., Zhu, H.J., Liu, S.Y., Fei, S.M., Fan, H., Yang, W.L.: Steering Bell-diagonal states. Sci. Rep. 6, 22025 (2016)
Nguyen, H.C., Vu, T.: Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett. 115, 10003 (2016)
McCloskey, R., Ferraro, A., Paternostro, M.: Einstein–Podolsky–Rosen steering and quantum steering ellipsoids: optimal two-qubit states and projective measurements. Phys. Rev. A 95, 012320 (2017)
Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z.: SLOCC orbit of rank-deficient two-qubit states: quantum entanglement, quantum discord and EPR. Quantum Inf. Process. 16, 178 (2017)
Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)
Cheng, J., Zhang, W.Z., Han, Y., Zhou, L.: Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments. Phys. Rev. A 91, 022328 (2015)
Altintas, F., Eryigit, R.: Quantum correlations in non-Markovian environments. Phys. Lett. A 374, 4283 (2010)
Wang, D., Huang, A.J., Hoehn, R.D., Ming, F., Sun, W.Y., Shi, J.D., Ye, L., Kais, S.: Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)
Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)
Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)
Hu, X.Y., Fan, H.: Effect of local channels on quantum steering ellipsoids. Phys. Rev. A 91, 022301 (2015)
Maziero, J., Werlang, T., Fanchini, F.F., Celeri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)
Du, M.M., Wang, D., Ye, L.: How Unruh effect affects freezing coherence in decoherence. Quantum Inf. Process. 16, 228 (2017)
Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151156 (1996)
Siomau, M., Kamli, A.A.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)
Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Effect of local filtering on freezing phenomena of quantum correlation. Quantum Inf. Process. 14, 2517 (2015)
Acknowledgements
This work was supported by the National Science Foundation of China under Grants Nos. 11575001 and 61601002, the Program for Excellent Talents in University of Anhui Province of China (Grant No. gxyq2018059), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), the Key project of Anhui Provincial Department of Education (Grant Nos. KJ2017A406, KJ2017A401) and the Key Project of West Anhui University (Grant No. KJ103762015B23).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, H., Ding, ZY., Sun, WY. et al. Exploring maximal steered coherence and entanglement via quantum steering ellipsoid framework. Quantum Inf Process 18, 299 (2019). https://doi.org/10.1007/s11128-019-2414-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2414-3