[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

QRMA: quantum representation of multichannel audio

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this study, quantum representation of multichannel aıdio (QRMA) that can be used in many fields in future is proposed. The QRMA uses three entangled qubit sequences where time, channel, negative and positive amplitude values can be stored. The three-qubit sequences are in basis state: \(| 0 \rangle \) and \(| 1 \rangle \). The preparation of the QRMA starting from the initial state \(| 0 \rangle \) is presented. In addition, multichannel audio is obtained from the QRMA quantum state. Several operations such as signal merging, signal addition, signal inversion, signal reversal, channel merging and channel reversal are studied on the QRMA. The simulations and the analyses show that the QRMA has more advantages than the other models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, New Jersey (2008)

    Google Scholar 

  3. Gunaydin, M.: Ultrasonik radyasyon ile sularından doğal organik madde gideriminin araş–ştırılması. Master of Science Thesis, Suleyman Demirel University, Turkey (2010)

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  5. Latorre, J.I.: Image Compression and Entanglement (2005). arxiv:quant-ph/0510031

  6. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  7. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  8. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sun, B., Iliyasu, A., Yan, F., Hirota, K.: An rgb multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Article  Google Scholar 

  11. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q.: Compare SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red–green–blue multi-channel quantum representation of digital images. Int. J. Light Electron Opt. 128(1), 121–132 (2017)

    Article  Google Scholar 

  13. Şahin, E., Yılmaz, İ.: QRMW: quantum representation of multi wavelength images. Turk. J. Electr. Eng. Comput. Sci. 26(2), 768–779 (2018)

    Article  Google Scholar 

  14. Le, P., Iliyasu, A., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  Google Scholar 

  15. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529(1), 46–60 (2014)

    Article  MathSciNet  Google Scholar 

  16. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  Google Scholar 

  19. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  23. Zhang, W.W., Gao, F., Liu, B., Hia, H.Y., Wen, Q.Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  Google Scholar 

  24. Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  26. Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  Google Scholar 

  27. Heidari, S., Naseri, M.: A novel lsb based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)

    Article  Google Scholar 

  28. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Şahin, E., Yılmaz, İ.: A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quantum Inf. Process. 17(11), 319 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II(298), 243–250 (2014)

    Google Scholar 

  32. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  Google Scholar 

  33. Zhou, R.-G., Wu, Q., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  34. Şahin, E., Yılmaz, İ.: Security of neqr quantum image by using quantum fourier transform with blind trent. Int. J. Inf Secur. Sci. 7(1), 20–25 (2018)

    Google Scholar 

  35. Yang, Y.G., Tiana, J., Suna, S.J., Peng, X.: Quantum-assisted encryption for digital audio signals. Int. J. Light Electron Opt. 126(21), 3221–3226 (2015)

    Article  Google Scholar 

  36. Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)

    Article  Google Scholar 

  37. Yan, F., Guo, Y., Iliyasu, A., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2017)

    Article  MathSciNet  Google Scholar 

  38. Chen, K., Iliyasu, A., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)

    Article  MathSciNet  Google Scholar 

  39. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724–733 (2018)

    Article  ADS  Google Scholar 

  40. Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Şahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, E., Yilmaz, İ. QRMA: quantum representation of multichannel audio. Quantum Inf Process 18, 209 (2019). https://doi.org/10.1007/s11128-019-2317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2317-3

Keywords

Navigation