Abstract
In this study, quantum representation of multichannel aıdio (QRMA) that can be used in many fields in future is proposed. The QRMA uses three entangled qubit sequences where time, channel, negative and positive amplitude values can be stored. The three-qubit sequences are in basis state: \(| 0 \rangle \) and \(| 1 \rangle \). The preparation of the QRMA starting from the initial state \(| 0 \rangle \) is presented. In addition, multichannel audio is obtained from the QRMA quantum state. Several operations such as signal merging, signal addition, signal inversion, signal reversal, channel merging and channel reversal are studied on the QRMA. The simulations and the analyses show that the QRMA has more advantages than the other models in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, New Jersey (2008)
Gunaydin, M.: Ultrasonik radyasyon ile sularından doğal organik madde gideriminin araş–ştırılması. Master of Science Thesis, Suleyman Demirel University, Turkey (2010)
Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)
Latorre, J.I.: Image Compression and Entanglement (2005). arxiv:quant-ph/0510031
Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)
Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)
Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)
Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)
Sun, B., Iliyasu, A., Yan, F., Hirota, K.: An rgb multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)
Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q.: Compare SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)
Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red–green–blue multi-channel quantum representation of digital images. Int. J. Light Electron Opt. 128(1), 121–132 (2017)
Şahin, E., Yılmaz, İ.: QRMW: quantum representation of multi wavelength images. Turk. J. Electr. Eng. Comput. Sci. 26(2), 768–779 (2018)
Le, P., Iliyasu, A., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)
Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529(1), 46–60 (2014)
Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)
Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)
Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)
Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)
Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)
Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)
Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)
Zhang, W.W., Gao, F., Liu, B., Hia, H.Y., Wen, Q.Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)
Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)
Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)
Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)
Heidari, S., Naseri, M.: A novel lsb based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)
Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)
Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)
Şahin, E., Yılmaz, İ.: A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quantum Inf. Process. 17(11), 319 (2018)
Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II(298), 243–250 (2014)
Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)
Zhou, R.-G., Wu, Q., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)
Şahin, E., Yılmaz, İ.: Security of neqr quantum image by using quantum fourier transform with blind trent. Int. J. Inf Secur. Sci. 7(1), 20–25 (2018)
Yang, Y.G., Tiana, J., Suna, S.J., Peng, X.: Quantum-assisted encryption for digital audio signals. Int. J. Light Electron Opt. 126(21), 3221–3226 (2015)
Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)
Yan, F., Guo, Y., Iliyasu, A., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2017)
Chen, K., Iliyasu, A., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)
Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724–733 (2018)
Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)
Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)
Acknowledgements
We would like to thank referees for valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Şahin, E., Yilmaz, İ. QRMA: quantum representation of multichannel audio. Quantum Inf Process 18, 209 (2019). https://doi.org/10.1007/s11128-019-2317-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2317-3