[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Visualizing coherence, Bell-nonlocality and their interrelation for two-qubit X states in quantum steering ellipsoid formalism

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum steering ellipsoid has been regarded as a faithful representation of arbitrary two-qubit state and provides a visualized geometry for quantum resources. Herein, considering two-qubit X states, the generally form of quantum steering ellipsoid is derived. It shows the l1 norm of coherence can be visually denoted by the x or y semiaxis length of the ellipsoid. By using ellipsoid with largest volume, we obtain the upper bounds of the l1 norm and relative entropy of coherence for two-qubit X states. We also reveal that the dynamics of l1 norm of coherence can be exhibited by the evolution of quantum steering ellipsoid under noisy channels. In addition, the expression of Bell-nonlocality for two-qubit X states is provided in the frame of quantum steering ellipsoids, and this expression is relevant to semiaxis lengths of ellipsoid. Based on this, we investigate relationship between the l1 norm of coherence and Bell-nonlocality. Notably, Bell-nonlocality of two-qubit X states can be detected according to the l1 norm of coherence. Finally, Bell-nonlocality and l1 norm of coherence for two-qubit Heisenberg spin-1/2 XX model with inhomogeneous field are researched as a verification of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  2. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  ADS  Google Scholar 

  3. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  4. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  5. Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113 (2013)

    Article  Google Scholar 

  6. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  7. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)

    Article  ADS  Google Scholar 

  8. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  9. Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  10. Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.S.: Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663 (2012)

    Article  ADS  Google Scholar 

  11. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  12. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  13. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  14. Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Cui, W., Xi, Z.R., Pan, Y.: Optimal decoherence control in non-Markovian open dissipative quantum systems. Phys. Rev. A 77, 032117 (2008)

    Article  ADS  Google Scholar 

  17. Wang, S.K., Jin, J.S., Li, X.Q.: Continuous weak measurement and feedback control of a solid-state charge qubit: a physical unravelling of non-Lindblad master equation. Phys. Rev. B 75, 155304 (2007)

    Article  ADS  Google Scholar 

  18. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  20. Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)

    Article  ADS  Google Scholar 

  21. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)

    Article  ADS  Google Scholar 

  22. Du, M.M., Wang, D., Ye, L.: How Unruh effect affects freezing coherence in decoherence. Quantum Inf. Process. 16, 228 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  24. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  25. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  26. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  27. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  28. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)

    Article  ADS  Google Scholar 

  29. Acín, A., Gisin, N., Masanes, L., Scarani, V.: Bell’s inequalities detect efficient entanglementInt. J. Quantum Inf. 2, 23 (2004)

    Article  Google Scholar 

  30. Li, S.B., Xu, J.B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A 72, 022332 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kofman, A.G., Korotkov, A.N.: Bell-inequality violation versus entanglement in the presence of local decoherence. Phys. Rev. A 77, 052329 (2008)

    Article  ADS  Google Scholar 

  32. Bellomo, B., Lo Franco, R., Compagno, G.: Dynamics of non-classically-reproducible entanglement. Phys. Rev. A 78, 062309 (2008)

    Article  ADS  Google Scholar 

  33. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  34. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  35. Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)

    Article  ADS  Google Scholar 

  36. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  37. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  38. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

  39. Milne, A., Jevtic, S., Jennings, D., Wiseman, H., Rudolph, T.: Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)

    Article  ADS  Google Scholar 

  40. Shi, M.J., Sun, C.X., Jiang, F.J., Yan, X.H., Du, J.F.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)

    Article  ADS  Google Scholar 

  41. Shi, M.J., Jiang, F.J., Sun, C.X., Du, J.F.: Geometric picture of quantum discord for two-qubit quantum states. New J. Phys. 13, 073016 (2011)

    Article  ADS  Google Scholar 

  42. Hu, X.Y., Fan, H.: Effect of local channels on quantum steering ellipsoids. Phys. Rev. A 91, 022301 (2015)

    Article  ADS  Google Scholar 

  43. Milne, A., Jennings, D., Jevtic, S., Rudolph, T.: Quantum correlations of two-qubit states with one maximally mixed marginal. Phys. Rev. A 90, 024302 (2014)

    Article  ADS  Google Scholar 

  44. Jevtic, S., Hall, M.J.W., Anderson, M.R., Zwierz, M., Wiseman, H.M.: Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32, A40 (2015)

    Article  ADS  Google Scholar 

  45. Nguyen, H.C., Vu, T.: Nonseparability and steerability of two-qubit states from the geometry of steering outcomes. Phys. Rev. A 94, 012114 (2016)

    Article  ADS  Google Scholar 

  46. Nguyen, H.C., Vu, T.: Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett. 115, 10003 (2016)

    Article  Google Scholar 

  47. Quan, Q., Zhu, H.J., Liu, S.Y., Fei, S.M., Fan, H., Yang, W.L.: Steering Bell-diagonal states. Sci. Rep. 6, 22025 (2016)

    Article  ADS  Google Scholar 

  48. Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z.: SLOCC orbit of rank-deficient two-qubit states: quantum entanglement, quantum discord and EPR. Quantum Inf. Process. 16, 178 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. McCloskey, R., Ferraro, A., Paternostro, M.: Einstein–Podolsky–Rosen steering and quantum steering ellipsoids: optimal two-qubit states and projective measurements. Phys. Rev. A 95, 012320 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  50. Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)

    Article  ADS  Google Scholar 

  51. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  52. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  53. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  54. Kay, A.: Using separable Bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109, 080503 (2012)

    Article  ADS  Google Scholar 

  55. Svozilík, J., Vallés, A., Peřina, J., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)

    Article  ADS  Google Scholar 

  56. Cen, L.X., Wu, N.J., Yang, F.H., An, J.H.: Local transformation of mixed states of two qubits to Bell diagonal states. Phys. Rev. A 65, 052318 (2002)

    Article  ADS  Google Scholar 

  57. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  58. Siomau, M., Kamli, A.A.: Defeating entanglement sudden death by a single local filtering Phys. Rev. A 86, 032304 (2012)

    Article  Google Scholar 

  59. Hammerer, K., Vidal, G., Cirac, J.I.: Characterization of nonlocal gates. Phys. Rev. A 66, 062321 (2002)

    Article  ADS  Google Scholar 

  60. Kheirandish, K., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation of China under Grants Nos. 11575001 and 61601002, the Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), the Program for Excellent Talents in University of Anhui Province of China (Grant No. gxyq2018059), the Key projects of Anhui Provincial Department of Education (Grant Nos. KJ2017A406 and KJ2017A401) and the Key Project of West Anhui University (Grant No. KJ103762015B23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ding, ZY., Sun, WY. et al. Visualizing coherence, Bell-nonlocality and their interrelation for two-qubit X states in quantum steering ellipsoid formalism. Quantum Inf Process 18, 146 (2019). https://doi.org/10.1007/s11128-019-2260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2260-3

Keywords

Navigation