Abstract
Quantum steering ellipsoid has been regarded as a faithful representation of arbitrary two-qubit state and provides a visualized geometry for quantum resources. Herein, considering two-qubit X states, the generally form of quantum steering ellipsoid is derived. It shows the l1 norm of coherence can be visually denoted by the x or y semiaxis length of the ellipsoid. By using ellipsoid with largest volume, we obtain the upper bounds of the l1 norm and relative entropy of coherence for two-qubit X states. We also reveal that the dynamics of l1 norm of coherence can be exhibited by the evolution of quantum steering ellipsoid under noisy channels. In addition, the expression of Bell-nonlocality for two-qubit X states is provided in the frame of quantum steering ellipsoids, and this expression is relevant to semiaxis lengths of ellipsoid. Based on this, we investigate relationship between the l1 norm of coherence and Bell-nonlocality. Notably, Bell-nonlocality of two-qubit X states can be detected according to the l1 norm of coherence. Finally, Bell-nonlocality and l1 norm of coherence for two-qubit Heisenberg spin-1/2 XX model with inhomogeneous field are researched as a verification of our results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)
Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)
Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113 (2013)
Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)
Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)
Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)
Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)
Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.S.: Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663 (2012)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)
Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)
Cui, W., Xi, Z.R., Pan, Y.: Optimal decoherence control in non-Markovian open dissipative quantum systems. Phys. Rev. A 77, 032117 (2008)
Wang, S.K., Jin, J.S., Li, X.Q.: Continuous weak measurement and feedback control of a solid-state charge qubit: a physical unravelling of non-Lindblad master equation. Phys. Rev. B 75, 155304 (2007)
Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)
Du, M.M., Wang, D., Ye, L.: How Unruh effect affects freezing coherence in decoherence. Quantum Inf. Process. 16, 228 (2017)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)
Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)
Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)
Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)
Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)
Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)
Acín, A., Gisin, N., Masanes, L., Scarani, V.: Bell’s inequalities detect efficient entanglementInt. J. Quantum Inf. 2, 23 (2004)
Li, S.B., Xu, J.B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A 72, 022332 (2005)
Kofman, A.G., Korotkov, A.N.: Bell-inequality violation versus entanglement in the presence of local decoherence. Phys. Rev. A 77, 052329 (2008)
Bellomo, B., Lo Franco, R., Compagno, G.: Dynamics of non-classically-reproducible entanglement. Phys. Rev. A 78, 062309 (2008)
Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)
Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)
Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)
Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)
Milne, A., Jevtic, S., Jennings, D., Wiseman, H., Rudolph, T.: Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)
Shi, M.J., Sun, C.X., Jiang, F.J., Yan, X.H., Du, J.F.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)
Shi, M.J., Jiang, F.J., Sun, C.X., Du, J.F.: Geometric picture of quantum discord for two-qubit quantum states. New J. Phys. 13, 073016 (2011)
Hu, X.Y., Fan, H.: Effect of local channels on quantum steering ellipsoids. Phys. Rev. A 91, 022301 (2015)
Milne, A., Jennings, D., Jevtic, S., Rudolph, T.: Quantum correlations of two-qubit states with one maximally mixed marginal. Phys. Rev. A 90, 024302 (2014)
Jevtic, S., Hall, M.J.W., Anderson, M.R., Zwierz, M., Wiseman, H.M.: Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32, A40 (2015)
Nguyen, H.C., Vu, T.: Nonseparability and steerability of two-qubit states from the geometry of steering outcomes. Phys. Rev. A 94, 012114 (2016)
Nguyen, H.C., Vu, T.: Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett. 115, 10003 (2016)
Quan, Q., Zhu, H.J., Liu, S.Y., Fei, S.M., Fan, H., Yang, W.L.: Steering Bell-diagonal states. Sci. Rep. 6, 22025 (2016)
Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z.: SLOCC orbit of rank-deficient two-qubit states: quantum entanglement, quantum discord and EPR. Quantum Inf. Process. 16, 178 (2017)
McCloskey, R., Ferraro, A., Paternostro, M.: Einstein–Podolsky–Rosen steering and quantum steering ellipsoids: optimal two-qubit states and projective measurements. Phys. Rev. A 95, 012320 (2017)
Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)
Lang, M.D., Caves, C.M.: Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)
Kay, A.: Using separable Bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109, 080503 (2012)
Svozilík, J., Vallés, A., Peřina, J., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)
Cen, L.X., Wu, N.J., Yang, F.H., An, J.H.: Local transformation of mixed states of two qubits to Bell diagonal states. Phys. Rev. A 65, 052318 (2002)
Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)
Siomau, M., Kamli, A.A.: Defeating entanglement sudden death by a single local filtering Phys. Rev. A 86, 032304 (2012)
Hammerer, K., Vidal, G., Cirac, J.I.: Characterization of nonlocal gates. Phys. Rev. A 66, 062321 (2002)
Kheirandish, K., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)
Acknowledgement
This work was supported by the National Science Foundation of China under Grants Nos. 11575001 and 61601002, the Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), the Program for Excellent Talents in University of Anhui Province of China (Grant No. gxyq2018059), the Key projects of Anhui Provincial Department of Education (Grant Nos. KJ2017A406 and KJ2017A401) and the Key Project of West Anhui University (Grant No. KJ103762015B23).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, H., Ding, ZY., Sun, WY. et al. Visualizing coherence, Bell-nonlocality and their interrelation for two-qubit X states in quantum steering ellipsoid formalism. Quantum Inf Process 18, 146 (2019). https://doi.org/10.1007/s11128-019-2260-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2260-3