Abstract
The Hamiltonian and the spin operators for a spin \( \tfrac{7}{2} \) are represented in the basis formed by the Kronecker products of the Pauli matrices. This allows us to represent eight quantum states of the spin 7/2 as the states of three coupled fictitious spins \( \tfrac{1}{2}, \) which can be considered as a system of three coupling qubits. The Hamiltonian for the three-spin system contains terms describing bi- and tripartite interactions with the strengths depending on the asymmetry parameter of the electric field gradient and the applied magnetic field. This leads to unusual magnetic field dependences of the classical and quantum correlations between the fictitious spins. It is shown that, unlike the predictions of the Ising, Heisenberg, and dipole–dipole coupling spin models, the quantum mutual information, classical correlations, entanglement, and quantum discords between the fictitious spins do not vanish with an increase in magnetic field. (The correlations tend to their limit values in a high field.) All the correlations possess the minima in the field dependences. The tripartite concurrence can achieve the maximal concurrence in a three-spin system in the pure state. The proposed approach may be useful for analysis of properties of particles with larger angular momentum and the many-body interactions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bloom, M., Herzog, B., Hahn, E.L.: Free magnetic induction in nuclear quadrupole resonance. Phys. Rev. 97, 1699 (1955)
Das, T.P., Hahn, E.L.: Nuclear quadrupole resonance spectroscopy. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, Suppl. I. Academic Press Inc., New York (1957)
Kessel, A.R.: Analog of the Bloch equations for spin > 1/2. Fiz. Tverd. Tela (Leningrad) 5, 1055 (1963) [Sov. Phys. Solid State 5, 934 (1963)]
Leppelmeier, G.W., Hanh, E.L.: Zero-field nuclear quadrupole spin-lattice relaxation in the rotating frame. Phys. Rev. 142, 179 (1966)
Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, vol. 1. Wiley, New York (1977)
Vega, S., Pines, A.: Operator formalism for double quantum NMR. J. Chem. Phys. 66, 5624 (1977)
Vega, S.: Fictitious spin 1/2 operator formalism for multiple quantum NMR. J. Chem. Phys. 68, 5518 (1978)
Vega, S., Naor, Y.: Triple quantum NMR on spin systems with I = 3/2 in solids. J. Chem. Phys. 75, 75 (1981)
Ainbinder, N.E., Furman G.B.: Theory of multipulse averaging for spin system with arbitrary nonequidistant spectra. Zh. Eksp. Teor. Fiz. 85, 988 (1983) [Sov. Phys. JETP 58, 575 (1983)]
Goldman, M.: Spin-1/2 description of spin-3/2. Adv. Magn. Reson. 14, 59–74 (1990)
Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Fictitious spin-1/2 operators and correlations in quadrupole nuclear spin system. Int. J. Quantum Inf. 16, 1850008 (2018)
Petit, D., Korb, J.-P.: Fictitious spin-1/2 operators and multitransition nuclear relaxation in solids: general theory. Phys. Rev. B 37, 5761 (1988)
Kessel, A.R., Ermakov, V.L.: Multiqubit spin. JETP Lett. 70, 61 (1999)
Khitrin, A.K., Fung, B.M.: Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei. J. Chem. Phys. 112, 6963 (2000)
Furman, G.B., Goren, S.D.: Pure NQR quantum computing. Z. Naturforsch. 57a, 315 (2002)
Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Two qubits in pure nuclear quadrupole resonance. J. Phys. Condens. Matter 14, 8715 (2002)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in nuclear quadrupole resonance. Hyperfine Interact. 198, 153 (2010)
Khitrin, A., Song, H., Fung, B.M.: Method of multifrequency excitation for creating pseudopure states for NMR quantum computing. Phys. Rev. A 63, 020301 (2001)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Single-spin entanglement. Quantum Inf. Process. 16, 206 (2017)
Abragam, A.: The Principles of Nuclear Magnetism. Clarendon, Oxford (1961)
Kramers, H.A.: Theorie generale de la rotation paramagnetique dans les cristaux. Proc. Amst. Acad. 33, 959 (1930)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)
Mintert, F., Kus, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)
Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Horodecki, M.: Simplifying monotonicity conditions for entanglement measures. Open Syst. Inf. Dyn. 12, 231 (2005)
Walter, M., Gross, D., Eisert, J.: Multi-Partite Entanglement. arXiv:1612.02437
Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC. Commun. Math. Phys. 328(1), 303–326 (2014)
Xu, Y.-L., Kong, X.-M., Liu, Z.-Q., Wang, C.-Y.: Quantum entanglement and quantum phase transition for the Ising model on a two-dimension square lattice. Phys. A 446, 217 (2016)
Furman, G., Goren, S., Meerovich, V., Sokolovsky, V.: Nuclear quadrupole resonance of spin 3/2 and entangled two-qubit states. Phys. Scr. 90, 105301 (2015)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Dynamics of entanglement in a one-dimensional Ising chain. Phys. Rev. A 77, 062330 (2008)
Yureishchev, M.A.: Entanglement entropy fluctuations in quantum Ising chains. J. Exp. Theor. Phys. 111, 525 (2010)
Doronin, S.I., Pyrkov, A.N., Fel’dman, E.B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. J. Exp. Theor. Phys. Lett. 85, 519 (2007)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf. Process. 8, 283–291 (2009)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement and multiple quantum coherence dynamics in spin clusters. Quantum Inf. Process. 8, 379–386 (2009)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307 (2011)
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state Quantum Inf. Process 11, 1603–1617 (2012)
Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole–dipole interaction. Quantum Inf. Process. 12, 3587–3605 (2013)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)
Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)
Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Generation of quantum correlations at adiabatic demagnetization. J. Phys. Commun. 1, 045009 (2017)
Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)
Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
YurishchevM, A.: NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore. J. Exp. Theor. Phys. 119, 828–837 (2014)
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Erratum Phys. Rev. A 82, 069902 (2010), Phys. Rev. A 82, 069902(E) (2010)
Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)
Ramanathan, R., Kurzynski, P., Chuan, T.K., Santos, M.F., Kaszlikowski, D.: Criteria for two distinguishable fermions to form a boson. Phys. Rev. A 84, 034304 (2011)
Yang, J., Huang, Y.: Tripartite and bipartite quantum correlations in the XXZ spin chain with three-site interaction. Quantum Inf. Process. 16, 281 (2017)
Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)
Kessel’, A.R., Ermakov, V.L.: Physical implementation of three-qubit gates on a separate quantum particle. J. Exp. Theor. Phys. Lett. 71, 307–309 (2000)
Khitrin, A.K., Fung, B.M.: NMR simulation of an eight-state quantum system. Phys. Rev. A 64, 032306 (2001)
Joyia, W., Khan, K.: Exploring the tripartite entanglement and quantum phase transition in the XXZ + h model. Quantum Inf. Process. 16, 243 (2017)
Jones, J.A., Hansen, R.H., Mosca, M.: Quantum logic gates and nuclear magnetic resonance pulse sequences. JMR 135, 353 (1998)
Jones, J.A., Hansen, R.H., Mosca, M.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)
Acknowledgements
ABK thanks the Ministry of Education and Science of the Russian Federation for support within the framework of Research and development in priority areas of advancement of the Russian Scientific and Technological Complex for 2014–2020, Agreement No. 14.608.21.0002 of 27.10.2015 (Unique Number of Agreement RFMEFI60815X0002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Furman, G.B., Goren, S.D., Meerovich, V.M. et al. Quantum and classical correlations in three-qubit spin. Quantum Inf Process 18, 66 (2019). https://doi.org/10.1007/s11128-019-2189-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2189-6