[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantum and classical correlations in three-qubit spin

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Hamiltonian and the spin operators for a spin \( \tfrac{7}{2} \) are represented in the basis formed by the Kronecker products of the Pauli matrices. This allows us to represent eight quantum states of the spin 7/2 as the states of three coupled fictitious spins \( \tfrac{1}{2}, \) which can be considered as a system of three coupling qubits. The Hamiltonian for the three-spin system contains terms describing bi- and tripartite interactions with the strengths depending on the asymmetry parameter of the electric field gradient and the applied magnetic field. This leads to unusual magnetic field dependences of the classical and quantum correlations between the fictitious spins. It is shown that, unlike the predictions of the Ising, Heisenberg, and dipole–dipole coupling spin models, the quantum mutual information, classical correlations, entanglement, and quantum discords between the fictitious spins do not vanish with an increase in magnetic field. (The correlations tend to their limit values in a high field.) All the correlations possess the minima in the field dependences. The tripartite concurrence can achieve the maximal concurrence in a three-spin system in the pure state. The proposed approach may be useful for analysis of properties of particles with larger angular momentum and the many-body interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bloom, M., Herzog, B., Hahn, E.L.: Free magnetic induction in nuclear quadrupole resonance. Phys. Rev. 97, 1699 (1955)

    Article  ADS  Google Scholar 

  2. Das, T.P., Hahn, E.L.: Nuclear quadrupole resonance spectroscopy. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, Suppl. I. Academic Press Inc., New York (1957)

  3. Kessel, A.R.: Analog of the Bloch equations for spin > 1/2. Fiz. Tverd. Tela (Leningrad) 5, 1055 (1963) [Sov. Phys. Solid State 5, 934 (1963)]

  4. Leppelmeier, G.W., Hanh, E.L.: Zero-field nuclear quadrupole spin-lattice relaxation in the rotating frame. Phys. Rev. 142, 179 (1966)

    Article  ADS  Google Scholar 

  5. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, vol. 1. Wiley, New York (1977)

    MATH  Google Scholar 

  6. Vega, S., Pines, A.: Operator formalism for double quantum NMR. J. Chem. Phys. 66, 5624 (1977)

    Article  ADS  Google Scholar 

  7. Vega, S.: Fictitious spin 1/2 operator formalism for multiple quantum NMR. J. Chem. Phys. 68, 5518 (1978)

    Article  ADS  Google Scholar 

  8. Vega, S., Naor, Y.: Triple quantum NMR on spin systems with I = 3/2 in solids. J. Chem. Phys. 75, 75 (1981)

    Article  ADS  Google Scholar 

  9. Ainbinder, N.E., Furman G.B.: Theory of multipulse averaging for spin system with arbitrary nonequidistant spectra. Zh. Eksp. Teor. Fiz. 85, 988 (1983) [Sov. Phys. JETP 58, 575 (1983)]

  10. Goldman, M.: Spin-1/2 description of spin-3/2. Adv. Magn. Reson. 14, 59–74 (1990)

    Article  Google Scholar 

  11. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Fictitious spin-1/2 operators and correlations in quadrupole nuclear spin system. Int. J. Quantum Inf. 16, 1850008 (2018)

    Article  MathSciNet  Google Scholar 

  12. Petit, D., Korb, J.-P.: Fictitious spin-1/2 operators and multitransition nuclear relaxation in solids: general theory. Phys. Rev. B 37, 5761 (1988)

    Article  ADS  Google Scholar 

  13. Kessel, A.R., Ermakov, V.L.: Multiqubit spin. JETP Lett. 70, 61 (1999)

    Article  ADS  Google Scholar 

  14. Khitrin, A.K., Fung, B.M.: Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei. J. Chem. Phys. 112, 6963 (2000)

    Article  ADS  Google Scholar 

  15. Furman, G.B., Goren, S.D.: Pure NQR quantum computing. Z. Naturforsch. 57a, 315 (2002)

    ADS  Google Scholar 

  16. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Two qubits in pure nuclear quadrupole resonance. J. Phys. Condens. Matter 14, 8715 (2002)

    Article  ADS  Google Scholar 

  17. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in nuclear quadrupole resonance. Hyperfine Interact. 198, 153 (2010)

    Article  ADS  Google Scholar 

  18. Khitrin, A., Song, H., Fung, B.M.: Method of multifrequency excitation for creating pseudopure states for NMR quantum computing. Phys. Rev. A 63, 020301 (2001)

    Article  ADS  Google Scholar 

  19. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Single-spin entanglement. Quantum Inf. Process. 16, 206 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Abragam, A.: The Principles of Nuclear Magnetism. Clarendon, Oxford (1961)

    Google Scholar 

  21. Kramers, H.A.: Theorie generale de la rotation paramagnetique dans les cristaux. Proc. Amst. Acad. 33, 959 (1930)

    MATH  Google Scholar 

  22. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  23. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  24. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  25. Mintert, F., Kus, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Horodecki, M.: Simplifying monotonicity conditions for entanglement measures. Open Syst. Inf. Dyn. 12, 231 (2005)

    Article  MathSciNet  Google Scholar 

  28. Walter, M., Gross, D., Eisert, J.: Multi-Partite Entanglement. arXiv:1612.02437

  29. Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC. Commun. Math. Phys. 328(1), 303–326 (2014)

    Article  ADS  Google Scholar 

  30. Xu, Y.-L., Kong, X.-M., Liu, Z.-Q., Wang, C.-Y.: Quantum entanglement and quantum phase transition for the Ising model on a two-dimension square lattice. Phys. A 446, 217 (2016)

    Article  MathSciNet  Google Scholar 

  31. Furman, G., Goren, S., Meerovich, V., Sokolovsky, V.: Nuclear quadrupole resonance of spin 3/2 and entangled two-qubit states. Phys. Scr. 90, 105301 (2015)

    Article  ADS  Google Scholar 

  32. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Dynamics of entanglement in a one-dimensional Ising chain. Phys. Rev. A 77, 062330 (2008)

    Article  ADS  Google Scholar 

  33. Yureishchev, M.A.: Entanglement entropy fluctuations in quantum Ising chains. J. Exp. Theor. Phys. 111, 525 (2010)

    Article  ADS  Google Scholar 

  34. Doronin, S.I., Pyrkov, A.N., Fel’dman, E.B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. J. Exp. Theor. Phys. Lett. 85, 519 (2007)

    Article  Google Scholar 

  35. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf. Process. 8, 283–291 (2009)

    Article  Google Scholar 

  36. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement and multiple quantum coherence dynamics in spin clusters. Quantum Inf. Process. 8, 379–386 (2009)

    Article  MathSciNet  Google Scholar 

  37. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307 (2011)

    Article  MathSciNet  Google Scholar 

  38. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state Quantum Inf. Process 11, 1603–1617 (2012)

    Article  MathSciNet  Google Scholar 

  39. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole–dipole interaction. Quantum Inf. Process. 12, 3587–3605 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  42. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  43. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  44. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  45. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  46. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  ADS  Google Scholar 

  47. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Generation of quantum correlations at adiabatic demagnetization. J. Phys. Commun. 1, 045009 (2017)

    Article  Google Scholar 

  48. Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  50. YurishchevM, A.: NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore. J. Exp. Theor. Phys. 119, 828–837 (2014)

    Article  ADS  Google Scholar 

  51. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Erratum Phys. Rev. A 82, 069902 (2010), Phys. Rev. A 82, 069902(E) (2010)

  52. Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  53. Ramanathan, R., Kurzynski, P., Chuan, T.K., Santos, M.F., Kaszlikowski, D.: Criteria for two distinguishable fermions to form a boson. Phys. Rev. A 84, 034304 (2011)

    Article  ADS  Google Scholar 

  54. Yang, J., Huang, Y.: Tripartite and bipartite quantum correlations in the XXZ spin chain with three-site interaction. Quantum Inf. Process. 16, 281 (2017)

    Article  Google Scholar 

  55. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  56. Kessel’, A.R., Ermakov, V.L.: Physical implementation of three-qubit gates on a separate quantum particle. J. Exp. Theor. Phys. Lett. 71, 307–309 (2000)

    Article  Google Scholar 

  57. Khitrin, A.K., Fung, B.M.: NMR simulation of an eight-state quantum system. Phys. Rev. A 64, 032306 (2001)

    Article  ADS  Google Scholar 

  58. Joyia, W., Khan, K.: Exploring the tripartite entanglement and quantum phase transition in the XXZ + h model. Quantum Inf. Process. 16, 243 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  59. Jones, J.A., Hansen, R.H., Mosca, M.: Quantum logic gates and nuclear magnetic resonance pulse sequences. JMR 135, 353 (1998)

    Google Scholar 

  60. Jones, J.A., Hansen, R.H., Mosca, M.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

ABK thanks the Ministry of Education and Science of the Russian Federation for support within the framework of Research and development in priority areas of advancement of the Russian Scientific and Technological Complex for 2014–2020, Agreement No. 14.608.21.0002 of 27.10.2015 (Unique Number of Agreement RFMEFI60815X0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Furman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furman, G.B., Goren, S.D., Meerovich, V.M. et al. Quantum and classical correlations in three-qubit spin. Quantum Inf Process 18, 66 (2019). https://doi.org/10.1007/s11128-019-2189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2189-6

Keywords

Navigation