Abstract
Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three-qubit quantum cloning operations. Considering certain well-known quantum cloning machines (input state independent and dependent), we provide examples of coherent and incoherent operations performed by them. We show that both the output entanglement and coherence could vanish under incoherent cloning operations. Coherent cloning operations, on the other hand, could be used to construct a universal and optimal coherence machine. It is also shown that under coherent cloning operations, the output two-qubit entanglement could be maximal even if the input coherence is negligible. Also it is possible to generate a fixed amount of entanglement independent of the nature of the input state.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, D., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446 (1936)
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)
Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)
Michler, M., Weinfurter, H., Zukowski, M.: Experiments towards Falsification of noncontextual hidden variable theories. Phys. Rev. Lett. 84, 5457 (2000)
Barreiro, J.T., Wei, T.-C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)
Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)
Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Yao, Y., Dong, G.H., Xiao, X., Sun, C.P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)
berg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)
wikliski, P., Studziski, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)
Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)
Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)
Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (2017)
Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Kim, H., Park, D., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)
Kang, Y.-H., Chen, Y.-H., Wu, Q.-C., Huang, B.-H., Song, J., Xia, Y.: Fast generation of W states of superconducting qubits with multiple Schrodinger dynamics. Sci. Rep. 6, 36737 (2016)
Luo, Y., Li, Y., Hsieh, M-H: Inequivalent multipartite coherence classes and new coherence monotones. arxiv:1807.06308
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nat. (Lond.) 299, 802 (1982)
Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)
Bruss, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 12302 (2000)
Bruss, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Ying, M.: WoottersZurek Quantum-copying machine: the higher-dimensional case. Phys. Lett. A 299, 107 (2002)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2000)
Bruss, D., Macchiavello, C.: On the entanglement structure in quantum cloning. Found. Phys. 33, 1617 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goswami, S., Adhikari, S. & Majumdar, A.S. Coherence and entanglement under three-qubit cloning operations. Quantum Inf Process 18, 36 (2019). https://doi.org/10.1007/s11128-018-2150-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2150-0