Abstract
We propose a new scheme for measurement-device-independent quantum key distribution (MDI-QKD) with a two-mode state source. In this scheme, the trigger state is split into different paths and detected at both senders; thus, four types of detection events can be obtained. Based on these events, the signal state is divided into four non-empty sets that can be used for parameter estimation and key extraction. Additionally, we carry out a performance analysis on the scheme with two-intensity (vacuum state and signal state) heralded single-photon sources. We also numerically study the statistical fluctuation in the actual system. Our simulations show that the error rate and the secure transmission distance of our two-intensity scheme are better than those of existing three- and four-intensity MDI-QKD schemes with different light sources. Considering statistical fluctuations, the maximum secure distance of our scheme can reach 344 km when the data length is 1013 and remains as long as 250 km when the data length is 1010. Moreover, our scheme improves the system performance and reduces the challenges of implementing the system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Change history
22 November 2018
A measurement-device-independent quantum key distribution (MDI-QKD) scheme with passive heralded single-photon sources has previously been published [1], while the two-intensity MDI-QKD scheme with a two-mode source proposed in our paper can been regarded as the extension and further research of the work [1].
References
Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984)
Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution. Phys. Rev. Lett. 85, 441–444 (2000)
Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)
Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)
Sun, S.H., Gao, M., Jiang, M.S., Li, C.Y., Liang, L.M.: Partially random phase attack to the practical two-way quantum-key-distribution system. Phys. Rev. A 85, 032304 (2012)
Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)
Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)
Lydersen, L., Wiechers, C., Wittinann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)
Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Schiavon, M., Vallone, G., Ticozzi, F., Villoresi, P.: Heralded single-photon sources for quantum-key-distribution applications. Phys. Rev. A 93, 012331 (2016)
Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)
Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)
Zhou, Y.Y., Zhou, X.J., Su, B.B.: A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectron. Lett. 12, 148–151 (2016)
Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)
Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)
Li, Y., Bao, W.S., Li, H.W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89, 032329 (2014)
Shan, Y.Z., Sun, S.H., Ma, X.C., Jiang, M.S., Zhou, Y.L., Liang, L.M.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)
Wang, Q., Zhang, C.H., Wang, X.B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)
Ma, X., Lo, H.K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, 073018 (2008)
Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)
Ma, X., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)
Sun, Q.C., Wang, W.L., Liu, Y., Zhou, F., Pelc, J.S., Fejer, M.M., Peng, C.Z., Chen, X.F., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive decoy-state quantum key distribution. Laser Phys. Lett. 11, 085202 (2014)
Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)
Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)
Mori, S., Soderholm, J., Namekata, N., Inoue, S.: On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide. Opt. Commun. 264, 156–162 (2006)
Ribordy, G., Brendel, J., Gauthier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63, 012309 (2000)
Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)
Wang, Q., Wang, X.B.: Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)
Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)
Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)
Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)
Zhang, C.H., Luo, S.L., Guo, G.C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A 92, 022332 (2015)
Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)
Acknowledgements
We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grant No. 61302099.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, L., Zhou, YY., Zhou, XJ. et al. New scheme for measurement-device-independent quantum key distribution. Quantum Inf Process 17, 231 (2018). https://doi.org/10.1007/s11128-018-1991-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1991-x