[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantum conference

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A notion of quantum conference is introduced in analogy with the usual notion of a conference that happens frequently in today’s world. Quantum conference is defined as a multiparty secure communication task that allows each party to communicate their message simultaneously to all other parties in a secure manner using quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed schemes can be easily reduced to a protocol for multiparty quantum key distribution and some earlier proposed schemes of quantum conference, where the notion of quantum conference was different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. It may be noted that in an ideal scheme of QD, information encoded by two parties exist simultaneously in a channel, but in the protocol for quantum conversation introduced in [20], it was not the case. However, the communication task at hand was equivalent.

  2. To send a string of qubits in secure manner to a distant party, the sender inserts an equal number of qubits as verification qubits. These checking qubits, known as decoy qubits, are prepared randomly in X basis or Z basis. Subsequently, both the sender and receiver compute the error rate on the decoy qubits in analogy of the BB84 protocol which helps them to conclude the secure transmission of the message qubits if the error rate is below the threshold limit.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994)

  3. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Die, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  11. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)

    Article  MathSciNet  Google Scholar 

  12. Long, G-l, Deng, F-g, Wang, C., Li, X-h, Wen, K., Wang, W-y: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  13. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  14. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  16. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  17. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  18. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)

    Article  ADS  Google Scholar 

  20. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87, 60008 (2009)

    Article  ADS  Google Scholar 

  21. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Zhang, L.-L., Zhan, Y.-B.: Quantum dialogue by using the two-qutrit entangled states. Mod. Phys. Lett. B 23, 2993 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971–2991 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Wikipedia: Conference. https://en.wikipedia.org/wiki/Conference. Accessed 28 Jan 2017

  26. English Oxford Dictionaries: Conference. https://en.oxforddictionaries.com/definition/conference. Accessed 28 Jan 2017

  27. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Theor. Phys. 15, 1750007 (2016)

    MATH  Google Scholar 

  28. Liu, W.J., Wang, H.B., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15, 869–879 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)

    Article  MATH  ADS  Google Scholar 

  30. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)

    Article  MATH  ADS  Google Scholar 

  32. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  34. Chen, K., Lo, H.-W.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Li, X.H., Li, C.Y., Deng, F.G., Liang, Y.J., Zhou, P., Zhou, H.Y.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23–26 (2007)

    Article  ADS  Google Scholar 

  36. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty Quantum Secret Report. Chin. Phys. Lett. 23, 1676–1679 (2006)

    Article  ADS  Google Scholar 

  37. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  38. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  40. Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nature 532, 169–171 (2016)

    Article  ADS  Google Scholar 

  41. Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2, 16010 (2016)

    Article  ADS  Google Scholar 

  42. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  43. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  44. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  45. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  46. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  47. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  48. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  51. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  52. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  53. Pathak, A., Thapliyal, K.: A comment on the one step quantum key distribution based on EPR entanglement. arXiv preprint arXiv:1609.07473 (2016)

  54. Aravinda, S., Srikanth, R., Pathak, A.: On the origin of nonclassicality in single systems. J. Phys. A 50, 465303 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  56. Mishra, S., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  MATH  Google Scholar 

  57. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum. Inf. Process. 15, 4681 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Hu, J.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  60. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AB acknowledges support from the Council of Scientific and Industrial Research, Government of India (Scientists’ Pool Scheme). CS thanks Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows No. 15F15015. She also thanks Tsinghua University, Beijing, China for the Post-Doctoral Fellowship awarded by the University. KT and AP thank Defense Research & Development Organization (DRDO), India for the support provided through the Project Number ERIP/ER/1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Thapliyal, K., Shukla, C. et al. Quantum conference. Quantum Inf Process 17, 161 (2018). https://doi.org/10.1007/s11128-018-1931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1931-9

Keywords

Navigation