[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lower bound of multipartite concurrence based on sub-partite quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the concurrence of arbitrary dimensional multipartite quantum systems. An explicit analytical lower bound of concurrence for four-partite mixed states is obtained in terms of the concurrences of tripartite mixed states. Detailed examples are given to show that our lower bounds improve the existing lower bounds of concurrence. The approach is generalized to five-partite quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature (London) 416, 608 (2002)

    Article  ADS  Google Scholar 

  4. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)

    Article  ADS  Google Scholar 

  7. Mintert, F.: Measures and dynamics of entangled states. Ph.D. thesis, Munich University, Munich (2004)

  8. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  11. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. DiVincenzo, D.P.: Quantum computation. Science 270, 5234 (1995)

    Article  MathSciNet  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ekert, A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  19. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  20. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  21. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  23. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclassical Opt. 3, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  30. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  31. Fei, S.M., Jost, J., Li-Jost, X.Q., Wang, G.F.: Entanglement of formation for a class of quantum states. Phys. Lett. A 310, 333 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)

    Article  ADS  Google Scholar 

  33. Fei, S.M., Li-Jost, X.Q.: A class of special matrices and quantum entanglement. Rep. Math. Phys. 53, 195 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fei, S.M., Wang, Z.X., Zhao, H.: A note on entanglement of formation and generalized concurrence. Phys. Lett. A 329, 414 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)

    Article  ADS  Google Scholar 

  36. Gerjuoy, E.: Lower bound on entanglement of formation for the qubit-qudit system. Phys. Rev. A 67, 052308 (2003)

    Article  ADS  Google Scholar 

  37. Ou, Y.C., Fan, H., Fei, S.M.: Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhao, M.J., Zhu, X.N., Fei, S.M., Li-Jost, X.Q.: Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states. Phys. Rev. A 84, 062322 (2011)

    Article  ADS  Google Scholar 

  39. Zhu, X.N., Zhao, M.J., Fei, S.M.: Lower bound of multipartite concurrence based on subquantum state decomposition. Phys. Rev. A 86, 022307 (2012)

    Article  ADS  Google Scholar 

  40. Chen, W., Fei, S.M., Zheng, Z.J.: Lower bound on concurrence for arbitrary-dimensional tripartite quantum states. Quantum Inf. Process. 15, 3761–3771 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Li, M., Fei, S.M., Wang, Z.X.: Bounds for multipartite concurrence. Rep. Math. Phys. 65, 289–296 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhu, X.N., Li, M., Fei, S.M.: Lower bounds of concurrence for multipartite states. In: AIP Conference Proceedings of Advances in Quantum Theory, p. 1424 (2012)

  43. Aolita, L., Mintert, F.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006)

    Article  ADS  Google Scholar 

  44. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  45. Zhu, X.N., Fei, S.M.: Lower bound of concurrence for qubit systems. Quantum Inf. Process. 13, 815–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Qi, X.F., Gao, T., Yan, F.l.: Lower bounds of concurrence for \(N\)-qubit systems and the detection of \(k\)-nonseparability of multipartite quantum systems. arXiv:1605.05000 (2016)

  47. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC under numbers 11571119 and 11405060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhu, XN., Fei, SM. et al. Lower bound of multipartite concurrence based on sub-partite quantum systems. Quantum Inf Process 16, 288 (2017). https://doi.org/10.1007/s11128-017-1742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1742-4

Keywords

Navigation