[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The local distinguishability of any three generalized Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the problem of distinguishing maximally entangled quantum states by using local operations and classical communication (LOCC). A question of fundamental interest is whether any three maximally entangled states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are distinguishable by LOCC. In this paper, we restrict ourselves to consider the generalized Bell states. And we prove that any three generalized Bell states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are locally distinguishable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Walgate, J., Hardy, L.: Nonlocality asymmetry and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)

    Article  ADS  Google Scholar 

  5. Ghosh, S., Kar, G., Roy, A.: Sen(De)A. and Sen U.: distinguishability of bell states. Phys. Rev. Lett. 87, 277902 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ghosh, S., Kar, G., Roy, A., Sarkar, D.: Distinguishability of maximally entangled states. Phys. Rev. A 70, 022304 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fan, H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)

    Article  ADS  Google Scholar 

  8. Nathanson, M.: Distinguishing bipartitite orthogonal states using LOCC: best and worst cases. J. Math. Phys. 46, 062103 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Yu, N., Duan, R., Ying, M.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)

    Article  ADS  Google Scholar 

  10. Cosentino, A.: Positive-partial-transpose-indistinguishable states via semidefinite programming. Phys. Rev. A 87, 012321 (2013)

    Article  ADS  Google Scholar 

  11. Cosentino, A., Russo, V.: Small sets of locally indistinguishable orthogonal maximally entangled states. Quantum Inf. Comput. 14, 1098–1106 (2014)

    MathSciNet  Google Scholar 

  12. Li, M.-S., Wang, Y.-L., Fei, S.-M., Zheng, Z.-J.: \(d\) locally indistinguishable maximally entangled states in \({\mathbb{C}}^d\otimes {\mathbb{C}}^d\). Phys. Rev. A 91, 042318 (2015)

    Article  ADS  Google Scholar 

  13. Yu, S.-X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 (2015)

  14. Bandyopadhyay, S., Ghosh, S., Kar, G.: LOCC distinguishability of unilaterally transformable quantum states. New J. Phys. 13, 123013 (2011)

    Article  ADS  Google Scholar 

  15. Nathanson, M.: Three maximally entangled states can require two-way local operations and classical communication for local discrimination. Phys. Rev. A 88, 062316 (2013)

    Article  ADS  Google Scholar 

  16. Zhang, Z.-C., Wen, Q.-Y., Gao, F., Tian, G.-J., Cao, T.-Q.: One-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Proc. 13, 795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Z.-C., Feng, K.-Q., Gao, F., Wen, Q.-Y.: Distinguishing maximally entangled states by one-way local operations and classical communication. Phys. Rev. A 91, 012329 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, Y.-L., Li, M.-S., Zheng, Z.-J., Fei, S.-M.: On small set of one-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Proc. 15, 1661 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Tian, G.-J., Yu, S.-X., Gao, F., Wen, Q.-Y., Oh, C.H.: Local discrimination of qudit lattice states via commutativity. Phys. Rev. A 92, 042320 (2015)

    Article  ADS  Google Scholar 

  20. Singal, T., Rahman, R., Ghosh, S., Kar, G.: Complete analysis of perfect local distinguishability of ensemble of four generalized bell states in \({\mathbb{C}}^{4}\otimes {\mathbb{C}}^{4}\). arXiv:1506.03667 (2015)

Download references

Acknowledgements

The authors thank the referees for many helpful suggestions. This work is supported by the NSFC 11475178, NSFC 11571119 and NSFC 11675113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Li, MS., Fei, SM. et al. The local distinguishability of any three generalized Bell states. Quantum Inf Process 16, 126 (2017). https://doi.org/10.1007/s11128-017-1579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1579-x

Keywords

Navigation