Abstract
We study the problem of distinguishing maximally entangled quantum states by using local operations and classical communication (LOCC). A question of fundamental interest is whether any three maximally entangled states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are distinguishable by LOCC. In this paper, we restrict ourselves to consider the generalized Bell states. And we prove that any three generalized Bell states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are locally distinguishable.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)
Walgate, J., Hardy, L.: Nonlocality asymmetry and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)
DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580 (2002)
Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)
Ghosh, S., Kar, G., Roy, A.: Sen(De)A. and Sen U.: distinguishability of bell states. Phys. Rev. Lett. 87, 277902 (2001)
Ghosh, S., Kar, G., Roy, A., Sarkar, D.: Distinguishability of maximally entangled states. Phys. Rev. A 70, 022304 (2004)
Fan, H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)
Nathanson, M.: Distinguishing bipartitite orthogonal states using LOCC: best and worst cases. J. Math. Phys. 46, 062103 (2005)
Yu, N., Duan, R., Ying, M.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)
Cosentino, A.: Positive-partial-transpose-indistinguishable states via semidefinite programming. Phys. Rev. A 87, 012321 (2013)
Cosentino, A., Russo, V.: Small sets of locally indistinguishable orthogonal maximally entangled states. Quantum Inf. Comput. 14, 1098–1106 (2014)
Li, M.-S., Wang, Y.-L., Fei, S.-M., Zheng, Z.-J.: \(d\) locally indistinguishable maximally entangled states in \({\mathbb{C}}^d\otimes {\mathbb{C}}^d\). Phys. Rev. A 91, 042318 (2015)
Yu, S.-X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 (2015)
Bandyopadhyay, S., Ghosh, S., Kar, G.: LOCC distinguishability of unilaterally transformable quantum states. New J. Phys. 13, 123013 (2011)
Nathanson, M.: Three maximally entangled states can require two-way local operations and classical communication for local discrimination. Phys. Rev. A 88, 062316 (2013)
Zhang, Z.-C., Wen, Q.-Y., Gao, F., Tian, G.-J., Cao, T.-Q.: One-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Proc. 13, 795 (2014)
Zhang, Z.-C., Feng, K.-Q., Gao, F., Wen, Q.-Y.: Distinguishing maximally entangled states by one-way local operations and classical communication. Phys. Rev. A 91, 012329 (2015)
Wang, Y.-L., Li, M.-S., Zheng, Z.-J., Fei, S.-M.: On small set of one-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Proc. 15, 1661 (2016)
Tian, G.-J., Yu, S.-X., Gao, F., Wen, Q.-Y., Oh, C.H.: Local discrimination of qudit lattice states via commutativity. Phys. Rev. A 92, 042320 (2015)
Singal, T., Rahman, R., Ghosh, S., Kar, G.: Complete analysis of perfect local distinguishability of ensemble of four generalized bell states in \({\mathbb{C}}^{4}\otimes {\mathbb{C}}^{4}\). arXiv:1506.03667 (2015)
Acknowledgements
The authors thank the referees for many helpful suggestions. This work is supported by the NSFC 11475178, NSFC 11571119 and NSFC 11675113.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, YL., Li, MS., Fei, SM. et al. The local distinguishability of any three generalized Bell states. Quantum Inf Process 16, 126 (2017). https://doi.org/10.1007/s11128-017-1579-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1579-x