[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tighter entanglement monogamy relations of qubit systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C and the entanglement of formation E. We present new entanglement monogamy relations satisfied by the \(\alpha \)-th power of concurrence for all \(\alpha \ge 2\), and the \(\alpha \)-th power of the entanglement of formation for all \(\alpha \ge \sqrt{2}\). These monogamy relations are shown to be tighter than the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)

    Article  ADS  Google Scholar 

  4. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A: Math. Gen. 39, 11847 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  7. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)

    Article  ADS  Google Scholar 

  9. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of bells inequality violations. Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  10. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  12. Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)

    Article  ADS  Google Scholar 

  13. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    Article  ADS  Google Scholar 

  14. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    Article  ADS  Google Scholar 

  15. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ren, X.J., Jiang, W.: Entanglement monogamy inequality in a \(2\otimes 2\otimes 4\) system. Phys. Rev. A 81, 024305 (2010)

    Article  ADS  Google Scholar 

  19. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  20. Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec Top. 159, 71–77 (2008)

    Article  Google Scholar 

  21. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  24. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  25. Bai, Y.K., Zhang, N., Ye, M.Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Bao-Zhi Sun, Xue-Na Zhu and Xian Shi for very useful discussions. This work is supported by NSFC under Number 11275131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xiang Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZX., Fei, SM. Tighter entanglement monogamy relations of qubit systems. Quantum Inf Process 16, 77 (2017). https://doi.org/10.1007/s11128-017-1520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1520-3

Keywords

Navigation