Abstract
We study the relative entropy of coherence under the effect of certain one-qubit channels that are Markovian and noisy. The cohering power and decohering power of phase damping, amplitude damping, flip and depolarizing channels are analytically calculated. For phase damping channel, the decohering power on the \(x,\ y,\) and z bases is the same. The same phenomenon is observed for the flip and depolarizing channels. Further, we show that weak measurement and its reversal can be employed to suppress the decohering power of the amplitude damping channel.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)
Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: basic tools and equivalence classes of states under symmetric operations. New J. Phys. 15, 033001 (2013)
Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)
Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)
Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Examining non-locality and quantum coherent dynamics induced by a common reservoir. Sci. Rep. 2, 885 (2012)
Lambert, N., Chen, Y.-N., Chen, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)
Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)
Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Towards fully quantum second laws of thermodynamics: limitations on the evolution of quantum coherences. Phys. Rev. Lett. 115, 210403 (2015)
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)
Hu, X.Y., Fan, H.: Coherence extraction from measurement-induced disturbance. arXiv:1508.01978 (2015)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)
Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)
Hu, X.Y.: Coherence non-generating channels. arXiv:1604.00145 (2016)
Liu, Z.W., Hu, X.Y., Lloyd, S.: A theory of resource destruction. arXiv:1606.03723 (2016)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: An operational approach. arXiv:1506.08186 (2015)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)
Xi, Z.J., Hu, M.L., Li, Y.M., Fan, H.: Cohering power of unitary operations and de-cohering of quantum operations. arXiv:1510.06473 (2015)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)
Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)
Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)
Lee, J.-C., Lim, H.-T., Hong, K.-H., Jeong, Y.-C., Kim, M.S., Kim, Y.-H.: Experimental demonstration of delayed-choice decoherence suppression. Nat. Commun. 5, 4522 (2014)
Acknowledgments
We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper. This work was supported by NSFC under Grant Nos. 11504205, 61502179, 61472452, the Fundamental Research Funds of Shandong University under Grant No. 2014TB018, and the Natural Science Foundation of Guangdong Province of China under Grant No. 2014A030310265. H.Z. Situ was sponsored by the State Scholarship Fund of the China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Situ, H., Hu, X. Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf Process 15, 4649–4661 (2016). https://doi.org/10.1007/s11128-016-1425-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1425-6