[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantum representation and watermark strategy for color images based on the controlled rotation of qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel quantum representation and watermarking scheme based on the controlled rotation of qubits are proposed. Firstly, a flexible representation for quantum color image (FRQCI) is proposed to facilitate the image processing tasks. Some basic image processing operations based on FRQCI representation are introduced. Then, a novel watermarking scheme for quantum images is presented. In our scheme, the carrier image is stored in the phase \(\theta \) of a qubit; at the same time, the watermark image is embedded into the phase \(\phi \) of a qubit, which will not affect the carrier image’s visual effect. Before being embedded into the carrier image, the watermark image is scrambled to be seemingly meaningless using quantum circuits, which further ensures the security of the watermark image. All the operations mentioned above are implemented by the controlled rotation of qubits. The experimental results on the classical computer show that the proposed watermarking scheme has better visual quality under a higher embedding capacity and outperforms the existing schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43(9), 4531–4536 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Martin, K.: Secure communication without encryption? IEEE Secur. Priv. 5(2), 68–71 (2007)

    Article  Google Scholar 

  3. Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4(2), 13–20 (2009)

    Google Scholar 

  4. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A. 83, 022310 (2011)

    Article  ADS  Google Scholar 

  5. Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505–2515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moire pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  MATH  Google Scholar 

  7. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wanga, S., Sang, J.Z., Song, X.H., Niu, X.M.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

  9. Salvador, E., Venegas, A., Sougato, B.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of the SPIE 5105, Quantum Information and Computation, vol. 137, August 5, 2003

  10. Li, H.S., Zhang, Q.X., Lan, S.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Venegas, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  13. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, B., Itiyasua, M., Yan, F., et al.: An RGB multi-channel representation for images on Quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Google Scholar 

  15. Li, H.S., Zhu, Q., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Song, X.H., Wang, S., Niu, X.M.: Multi-channel quantum image representation based on phase transform and elementary transformations. J. Inf. Hiding Multimed. Signal Process. 5(4), 574–585 (2014)

    Google Scholar 

  17. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Iliyasu, A.M., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inform. Sci. 186(1), 126–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Restricted geometric transformations and their applications for quantum image watermarking and authentication. In: Proceedings of the 10th Asian Conference on Quantum Information Science (AQIS 2010), pp. 212–214 (2010)

  20. Yan, F., Abdullah, M.I., Sun, B.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Yang, Y.G., Xu, P., Tian, J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13(7), 1931–1936 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Iliyasu, A.M., Le, P.Q., Yan, F., et al.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)

    Article  Google Scholar 

  26. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, N., Lin, S.: A watermarking strategy for quantum image based on least significant bit. Chin. J. Quantum Electron. 32(3), 263–269 (2015)

    Google Scholar 

  28. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Giuliano, B., Giulio, C., Giuliano, S.: Principles of Quantum Computation and Information (Volume I: Basic Concepts), pp. 108–112. World Scientific, Singapore (2004)

  30. Li, H.S., Zhu, Q., Li, M.C., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273(3), 212–232 (2014)

    Article  Google Scholar 

  31. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum image. J. Adv. Comput. Intell. Intell. Inform. 16(5), 698–706 (2011)

    Google Scholar 

  33. Michael, A.N., Isaac, L.C.: Quantum Computation and Quantum Information, pp. 80–81. Cambridge University Press, Cambridge (2000)

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 61170132), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015021), the Scientific Technology Research Project of the Education Department of Heilongjiang Province, China (Grant No. 12541059) and the graduate student innovation research project of Northeast Petroleum University, China (Grant No. YJSCX2016-030NEPU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xiao, H. & Li, B. Quantum representation and watermark strategy for color images based on the controlled rotation of qubits. Quantum Inf Process 15, 4415–4440 (2016). https://doi.org/10.1007/s11128-016-1413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1413-x

Keywords

Navigation