[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lower bound on concurrence for arbitrary-dimensional tripartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary \(m\otimes n\otimes l\)-dimensional tripartite quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  10. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  11. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  12. Fei, S.M., Jost, J., Li-Jost, X.Q., Wang, G.F.: Entanglement of formation for a class of quantum states. Phys. Lett. A 310, 333 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fei, S.M., Li-Jost, X.Q.: A class of special matrices and quantum entanglement. Rep. Math. Phys. 53, 195 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fei, S.M., Wang, Z.X., Zhao, H.: A note on entanglement of formation and generalized concurrence. Phys. Lett. A 329, 414 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)

    Article  ADS  Google Scholar 

  16. Mintert, F., Buchleitner, A., Kuś, M.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)

    Article  ADS  Google Scholar 

  17. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  20. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)

    Article  ADS  Google Scholar 

  23. Gerjuoy, E.: Lower bound on entanglement of formation for the qubit-qudit system. Phys. Rev. A 67, 052308 (2003)

    Article  ADS  Google Scholar 

  24. Ou, Y.C., Fan, H., Fei, S.M.: Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhao, M.J., Zhu, X.N., Fei, S.M., Li-Jost, X.Q.: Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states. Phys. Rev. A 84, 062322 (2011)

    Article  ADS  Google Scholar 

  26. Li, X.S., Gao, X.H., Fei, S.M.: Lower bound of concurrence based on positive maps. Phys. Rev. A 83, 034303 (2011)

    Article  ADS  Google Scholar 

  27. Mintert, F., Buchleitner, A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gao, X.H., Fei, S.M., Wu, K.: Lower bounds of concurrence for tripartite quantum systems. Phys. Rev. A 74, 050303 (2006)

    Article  ADS  Google Scholar 

  29. Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Top. 159, 71 (2008)

    Article  Google Scholar 

  30. Yu, C.S., Song, H.S.: Measurable entanglement for tripartite quantum pure states of qubits. Phys. Rev. A 76, 022324 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhu, X.N., Zhao, M.J., Fei, S.M.: Lower bound of multipartite concurrence based on subquantum state decomposition. Phys. Rev. A 86, 022307 (2012)

    Article  ADS  Google Scholar 

  32. Li, M., Fei, S.M., Wang, Z.X.: Bounds for multipartite concurrence. Rep. Math. Phys. 65, 289–296 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhu, X.N., Li, M., Fei, S.M.: Lower bounds of concurrence for multipartite states. Aip Conf. Proc. 1424, 77 (2012)

  34. Zhu, X.N., Fei, S.M.: Lower bound of concurrence for qubit systems. Quantum Inform. Process. 13, 815–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, W., Zhu, X.N., Fei, S.M., Zheng, Z.J.: Lower bound of multipartite concurrence based on sub-partite quantum systems. arXiv:1501.02316 (2015)

Download references

Acknowledgments

This project is supported by NSFC through Grants No. 11571119, 11405060, 11475178 and 11275131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Fei, SM. & Zheng, ZJ. Lower bound on concurrence for arbitrary-dimensional tripartite quantum states. Quantum Inf Process 15, 3761–3771 (2016). https://doi.org/10.1007/s11128-016-1369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1369-x

Keywords

Navigation