Abstract
We propose two schemes for concentration of \((n+1)\)-qubit entangled states that can be written in the form of \(\left( \alpha |\varphi _{0}\rangle |0\rangle +\beta |\varphi _{1}\rangle |1\rangle \right) _{n+1}\) where \(|\varphi _{0}\rangle \) and \(|\varphi _{1}\rangle \) are mutually orthogonal n-qubit states. The importance of this general form is that the entangled states such as Bell, cat, GHZ, GHZ-like, \(|\varOmega \rangle \), \(|Q_{5}\rangle \), 4-qubit cluster states and specific states from the nine SLOCC-nonequivalent families of 4-qubit entangled states can be expressed in this form. The proposed entanglement concentration protocol is based on the local operations and classical communications (LOCC). It is shown that the maximum success probability for ECP using quantum nondemolition technique (QND) is \(2\beta ^{2}\) for \((n+1)\)-qubit states of the prescribed form. It is shown that the proposed schemes can be implemented optically. Further, it is also noted that the proposed schemes can be implemented using quantum dot and microcavity systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)
Bandyopadhyay, S.: Qubit- and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)
Gu, Y.J., Li, W.D., Guo, G.C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)
Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation usinglinear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)
Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965 (2013)
Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)
Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Quantum Inf. Process. 12, 2577 (2013)
Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)
Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633 (2013)
Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)
Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)
Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)
Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)
Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)
Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)
Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)
Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)
Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507 (2013)
Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825 (2014)
Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)
Rigas, I., Klimov, A.B., Sanchez-Soto, L.L., Leuchs, G.: Nonlinear cross-Kerr quasiclassical dynamics. New J. Phys. 15, 043038 (2013)
Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input–output process in low-Q cavity QED regime. Opt. Express 21(Issue 4), 4093 (2013)
Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12(Issue 6), 2087 (2013)
Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752 (2014)
Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)
Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. JOSA B 30(Issue 3), 678 (2013)
Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)
Hea, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298, 260 (2013)
Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)
Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143 (2015)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)
Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)
Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: Beyond mean values. Phys. Rev. A 63, 022301 (2001)
Acknowledgments
AB thanks DST-SERB Project SR/S2/LOP-18/2012. AB also acknowledges S. Bandyopadhyay for some technical discussion and his interest in the present work. AP thanks Department of Science and Technology (DST), India, for support provided through the DST Project No. SR/S2/LOP-0012/2010. CS thanks to Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows no. 15F15015.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Banerjee, A., Shukla, C. & Pathak, A. Maximal entanglement concentration for a set of \((n+1)\)-qubit states. Quantum Inf Process 14, 4523–4536 (2015). https://doi.org/10.1007/s11128-015-1128-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1128-4