Abstract
Cooperative communication is starting to attract substantial research attention in quantum information theory. However, given a specific network, it is still unknown whether quantum cooperative communication can be successfully performed. In this paper, we investigate network coding for quantum cooperative multicast (QCM) over the classic butterfly network. A very reasonable definition of QCM is first introduced. It not only perfectly focuses on the basic idea of quantum cooperative communication, but also wonderfully reflects the characteristic of classical multicast over a specific network structure. Next, we design QCM protocol for two-level systems and generalize the protocol into d-dimensional Hilbert space. It is shown that our protocols have significant advantages in terms of resource cost and compatibility with classical multicast. Besides, the success probability, which only depends on the coefficients of the initial quantum states, is carefully analyzed. In particular if the source nodes choose the quantum equatorial states, success probability can reach 1.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Splitstream, S.A.: High-bandwidth multicast in a cooperative environment. In: Proceedings of the ACM SOSP (2003)
Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In: INFOCOM 2005. 24th Annual joint conference of the IEEE computer and communications societies. Proceedings IEEE: IEEE (2005)
Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7, 72–93 (2005)
Chen, C.Y., Hsueh, C.C., Hsu, C.C.: Two-to-one quantum teleportation protocol and its application. Chaos Solitons Fractals 36, 1399–1404 (2008)
Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–4801 (2010)
An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)
An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)
Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via epr-type pairs. Opt. Commun. 284, 2617–2621 (2011)
Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352–355 (2001)
Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000)
Li, S., Cai, R.W.N.: Linear network coding. IEEE Trans. Inf. Theory 49, 371–381 (2003)
Koetter, R., Medard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11, 782–795 (2003)
Xie, S., Wang, Y.: Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel. Pers. Commun. 78(1), 231–246 (2014)
Guo, P., Wang, J., Geng, X.H., Kim, C.S., Kim, J.-U.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929–936 (2014)
Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding for general graphs. quant-ph Arxiv preprint, 0611039 (2006)
Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. Lect. Notes Comput. Sci. 4393, 610–621 (2007)
Leung, D., Oppenheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)
Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of m-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)
Acin, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)
Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: General scheme for perfect quantum network coding with free classical communication. Lect. Notes Comput. Sci. 5555, 622–633 (2009)
Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Perfect quantum network communication protocol based on classical network coding. In: ISIT. 2010, IEEE: Austin, Texas, USA pp. 2686–2690
Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of the 2011 IEEE international symposium on information theory proceedings (ISIT) pp. 109–113 (2011)
Jain, A., Franceschetti, M., Meyer, D.A.: On quantum network coding. J. Math. Phys. 52, 032201 (2011)
Dougherty, R., Zeger, K.: Nonreversibility and equivalent constructions of multiple-unicast networks. IEEE Trans. Inf. Theory 52, 5067–5077 (2006)
Li, Z., Li, B.: Network coding: the case of multiple unicast sessions. In: Proceedings of allerton (2004)
Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76, 040301 (2007)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Chen, X.B., Zhang, N., Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a w state. Opt. Commun. 281, 2331–2335 (2008)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Shi, Y., Soljanin, E.: On multicast in quantum networks. In: Proceedings of the 40th annual conference on information sciences and systems (2006)
SaiToh, A., Rahimi, R., Nakahara, M.: Economical (k, m)-threshold controlled quantum teleportation. Phys. Rev. A 79, 062313 (2009)
Yu, C., Song, H., Wang, Y.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)
Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)
Acknowledgments
This work has been supported by NSFC (Grant Nos. 61272514, 61170272, 61121061, 61411146001), NCET (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012), the Fok Ying Tung Education Foundation (Grant No. 131067), the NSERC (RT733206) and China Scholarship Council (CSC).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Xu, G., Chen, XB., Li, J. et al. Network coding for quantum cooperative multicast. Quantum Inf Process 14, 4297–4322 (2015). https://doi.org/10.1007/s11128-015-1098-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1098-6