Abstract
We present a security analysis against collective attacks for a time–energy entanglement-based quantum key distribution protocol, given the practical constraints of single-photon detector efficiency, channel loss, and finite-key considerations. We find a positive secure-key capacity when the key length increases beyond \(10^{4}\) for eight-dimensional systems. The minimum key length required is reduced by the ability to post-select on coincident single-photon detection events. Including finite-key effects, we show the ability to establish a shared secret key over a 200 km fiber link.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing IEEE, New York, pp. 175–179 (1984)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)
Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999)
Ralph, T.C.: Security of continuous-variable quantum cryptography. Phys. Rev. A 62, 062306 (2000)
Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378 (2013)
Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)
Zhang, L., Silberhorn, C., Walmsley, I.A.: Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett. 100, 110504 (2008)
Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737 (2000)
Thew, R.T., Acín, A., Zbinden, H., Gisin, N.: Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004)
Ali-Khan, I., Broadbent, C.J., Howell, J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007)
Thew, R.T., Tanzilli, S., Tittel, W., Zbinden, H., Gisin, N.: Experimental investigation of the robustness of partially entangled qubits over 11 km. Phys. Rev. A 66, 062304 (2002)
Qi, B.: Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation. Opt. Lett. 31(18), 2795 (2006)
Mower, J., Zhang, Z., Desjardins, P., Lee, C., Shapiro, J.H., Englund, D.: High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A 87, 062322 (2013)
Nunn, J., Wright, L.J., Söller, C., Zhang, L., Walmsley, I.A., Smith, B.J.: Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express 21(13), 15959 (2013)
Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313 (2001)
Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89, 240401 (2002). doi:10.1103/PhysRevLett.89.240401
Molina-Terriza, G., Vaziri, A., Řeháček, J., Hradil, Z., Zeilinger, A.: Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92, 167903 (2004)
Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)
Zhong, T., Wong, F.N.C., Restelli, A., Bienfang, J.C.: Efficient single-spatial-mode periodically-poled KTiOPO\(_4\) waveguide source for high-dimensional entanglement-based quantum key distribution. Opt. Express 20(24), 26868 (2012)
Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7(3), 210 (2013)
Zhang, Z., Mower, J., Englund, D., Wong, F.N.C., Shapiro, J.H.: Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. Phys. Rev. Lett. 112, 120506 (2014)
Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008). doi:10.1103/PhysRevLett.100.200501
Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010). doi:10.1103/PhysRevA.82.030301
Sheridan, L., Scarani, V.: Erratum: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 83, 039901(E) (2011). doi:10.1103/PhysRevA.83.039901
Cai, R.Y.Q., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11, 045024 (2009)
Sheridan, L., Le, T.P., Scarani, V.: Finite-key security against coherent attacks in quantum key distribution. New J. Phys. 12(12), 123019 (2010)
Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)
Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012)
Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 32, 634 (2012)
Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)
Law, C.K., Eberly, J.H.: Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004)
Franson, J.D.: Nonlocal cancellation of dispersion. Phys. Rev. A 45, 3126 (1992)
Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)
Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)
Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the DARPA Information in a Photon program, through Grant W911NF-10-1-0416 from the Army Research Office, and the Columbia Optics and Quantum Electronics IGERT under NSF Grant DGE-1069420.
Rights and permissions
About this article
Cite this article
Lee, C., Mower, J., Zhang, Z. et al. Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution. Quantum Inf Process 14, 1005–1015 (2015). https://doi.org/10.1007/s11128-014-0904-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0904-x