[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A hybrid quantum key distribution protocol based on extended unitary operations and fountain codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In 1984, Bennett and Brassard designed the first quantum key distribution protocol, whose security is based on quantum indeterminacy. Since then, there has been growing research activities, aiming in designing new, more efficient and secure key distribution protocols. The work presents a novel hybrid quantum key distribution protocol. The key distribution is derived from both quantum and classical data. This is why it is called hybrid. The protocol applies extended unitary operations derived from four basic unitary operations and distributed fountain codes. Compared to other protocols published so far, the new one is more secure (provides authentication of parties and detection of eavesdropping) and efficient. Moreover, our protocol still works over noisy and lossy channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20–22. IEEE Computer Society Press, pp. 124–134 (1994)

  2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179. IEEE, New York (1984)

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Zhang, Y., Li, C., Guo, G.: Comment on ‘Quantum key distribution without alternative measurements’. Phys. Rev. A. 63, 036301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239–1241 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031–1038 (2007)

    Article  Google Scholar 

  8. Inoue, K.: Quantum key distribution technologies. IEEE J. Sel. Top. Quantum Electron. 12, 888–896 (2006)

    Article  Google Scholar 

  9. Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A. 87, 032312 (2013)

    Article  ADS  Google Scholar 

  10. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: A quantum key distribution and identification protocol based on entanglement swapping. arXiv:quant-ph/0412014v1 2 Dec 2004.

  11. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A. 65, 032302–32305 (2002)

    Article  ADS  Google Scholar 

  12. Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A. 87, 012331 (2013)

    Article  ADS  Google Scholar 

  13. Maeda, W., Tanaka, A., Takahashi, S., Tajima, A., Tomita, A.: Technologies for quantum key distribution networks integrated with optical communication networks. IEEE J. Sel. Top. Quantum Electron. 16, 1591–1601 (2009)

    Article  Google Scholar 

  14. Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622–1629 (2009)

    Article  Google Scholar 

  15. Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quantum Electron. 15, 1630–1645 (2009)

    Article  Google Scholar 

  16. Simon, D.S., Sergienko, A.V.: High capacity quantum key distribution via hyper-entangled degrees of freedom. New J. Phys. 16, 063052 (2014)

    Article  ADS  Google Scholar 

  17. Duligall, J.L., Godfrey, M.S., Harrison, K.A., Munro, W.J., Rarity, J.G.: Low cost and compact quantum key distribution. New J. Phys. 8, 249–265 (2006)

    Article  ADS  Google Scholar 

  18. Duligall, J.L., Godfrey, M.S., Lynch, A., Munro, W.J., Harrison, K.A., Rarity, J.G.: Low cost quantum secret key growing for consumer transactions. In: Proceedings of the International Quantum Electronics Conference, pp. 4387012–4387012 (2007)

  19. Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)

    Article  Google Scholar 

  20. Gao, F., Qin, S., Guo, F., Wen, Q.Y.: Dense-coding attack on three party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)

    Article  ADS  Google Scholar 

  21. Byers, J.W., Luby, M., Mitzenmacher, M., Rege A.: A digital fountain approach to reliable distribution of bulk data. In: Steenstrup, Martha (ed.) In: Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’98), pp. 56–67. ACM, New York, NY, USA,

  22. Lai, H., Xiao, J.H., Orgun, M.A., Xue, L.Y., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf Process. 13, 895–907 (2014)

    Article  ADS  MATH  Google Scholar 

  23. Lin, Y., Liang, B., Li, B.: Data persistence in large-scale sensor networks with decentralized fountain codes. In: INFOCOM 2007. In: 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 6–12 May 2007, Anchorage, Alaska, USA. pp. 1658–1666, IEEE (2007)

  24. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 41–48 (2005)

    MathSciNet  Google Scholar 

  27. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojanhorse attacks on quantum-key-distribution systems. Phys. Rev. A. 73, 022320 (2006)

    Article  ADS  Google Scholar 

  28. Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503–100507 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum inf. Comput. 4(5), 325–360 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  31. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  32. Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J.H., Takeoka, M., Wilde, M.M.: Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014). arXiv:1307.0380

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous reviewers for their valuable comments and suggestions to improve the presentation of this paper. Also, they would like to thank Prof. Gao Fei from Beijing University of Posts and Telecommunications for helping them to improve this paper. Hong Lai has been supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES). Josef Pieprzyk was supported by Australian Research Council grant DP0987734. This work is also supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB923200), the National Natural Science Foundation of China (No. 61377067). The work is also supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lai.

Additional information

Liyin Xue is involved in this paper, which is completely his personal hobby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Xue, L., Orgun, M.A. et al. A hybrid quantum key distribution protocol based on extended unitary operations and fountain codes. Quantum Inf Process 14, 697–713 (2015). https://doi.org/10.1007/s11128-014-0860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0860-5

Keywords

Navigation