[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quantum correlations at negative absolute temperatures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study behavior of quantum discord, a kind of quantum correlation, in systems of dipole–dipole interacting spins in an external magnetic field in the whole temperature range (\(-\infty <T<\infty \)). It was shown that negative temperatures, which are introduced to describe inversions in the population in a finite level system, provide more favorable conditions for emergence of quantum correlations including entanglement. We show that at negative temperature, the correlations become more intense and discord exists between remote spins being in separated states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vol. I and II. World Scientific, Singapore (2007)

    Book  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  6. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A Math. Theor. 42, 412002 (2009)

    Article  MathSciNet  Google Scholar 

  9. Ali, M., Rau,A.R.P., Alber,G.: Quantum discord for two-qubit X states, Phys. Rev. A 81, 042105 (2010), 82, 069902(E) (2010)

  10. Vinjanampathy, S., Rau, A.R.P.: Generalized X states of N qubits and their symmetries. Phys. Rev. A 82, 032336 (2010)

    Article  ADS  Google Scholar 

  11. Chen, Qing, Zhang, Chengjie, Yu, Sixia, Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  12. Xiao-Ming, Lu, Ma, Jian, Xi, Zhengjun, Wang, Xiaoguang: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  13. Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A Math. Theor. 45, 095303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  14. Huang, Yichen: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  15. Purcell, E.M., Pound, R.V.: A nuclear spin system at negative temperature. Phys. Rev. 81, 279 (1951)

    Article  ADS  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Statistical Physics, part 1, Third Revised and Enlarged Edition. Pergamon press, Oxford (1980)

    Google Scholar 

  17. Ramsey, N.F.: Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev. 103, 20 (1956)

    Article  ADS  MATH  Google Scholar 

  18. Klein, M.J.: Negative absolute temperatures. Phys. Rev. 104, 589 (1956)

    Article  ADS  MATH  Google Scholar 

  19. Medley, P., Weld, D.M., Miyake, H., Pritchard, D.E., Ketterle, W.: Spin gradient demagnetization cooling of ultracold atoms. Phys. Rev. Lett. 106, 195301 (2011)

    Article  ADS  Google Scholar 

  20. Braun, S., Ronzheimer, J.P., Schreiber, M., Hodgman, S.S., Rom, T., Bloch, I., Schneider, U.: Negative absolute temperature for motional degrees of freedom. Science 339, 52 (2013)

    Article  ADS  Google Scholar 

  21. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Quantum entanglement at negative temperature. J. Phys. A Math. Theor. 46, 135303 (2013)

  22. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Zero field entanglement in dipolar coupling spin system at negative temperature. Int J Quantum Inf 11, 1350050 (2013)

    Article  MathSciNet  Google Scholar 

  23. Abragam, A.: The Principle of Magnetic Resonance. Clarendon Press, Oxford (1961)

    Google Scholar 

  24. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf Process 8, 283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf Process 10, 307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf Process 11, 1603 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Adiabatic demagnetization and generation of entanglement in spin systems. Phys. Lett. A 376, 925 (2012)

    Article  ADS  Google Scholar 

  28. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Luo, S.: Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  30. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  31. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  32. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole-dipole interaction. Quantum Inf. Process. 12, 3587 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Furman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furman, G.B., Goren, S.D., Meerovich, V.M. et al. Quantum correlations at negative absolute temperatures. Quantum Inf Process 13, 2759–2768 (2014). https://doi.org/10.1007/s11128-014-0826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0826-7

Keywords

Navigation