[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Novel image encryption/decryption based on quantum Fourier transform and double phase encoding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Commentary to this article was published on 16 March 2014

Abstract

A novel gray-level image encryption/decryption scheme is proposed, which is based on quantum Fourier transform and double random-phase encoding technique. The biggest contribution of our work lies in that it is the first time that the double random-phase encoding technique is generalized to quantum scenarios. As the encryption keys, two phase coding operations are applied in the quantum image spatial domain and the Fourier transform domain respectively. Only applying the correct keys, the original image can be retrieved successfully. Because all operations in quantum computation must be invertible, decryption is the inverse of the encryption process. A detailed theoretical analysis is given to clarify its robustness, computational complexity and advantages over its classical counterparts. It paves the way for introducing more optical information processing techniques into quantum scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bourbakis, N., Alexopoulos, C.: Picture data encryption using SCAN pattern. Pattern Recognit. 25(6), 567–581 (1992)

    Article  Google Scholar 

  2. Refregier, R., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20(7), 767–769 (1995)

    Article  ADS  Google Scholar 

  3. Liu, Z., Guo, Q., Xu, L., Ahmad, M.A., Liu, S.: Double image encryption by using iterative random binary encoding in gyrator domains. Opt. Exp. 18(11), 12033–12043 (2010)

    Google Scholar 

  4. Chang, C.C., Hwang, M.S., Chen, T.S.: A new encryption algorithm for image cryptosystems. J. Syst. Softw. 58(7), 83–91 (2001)

    Article  Google Scholar 

  5. Chang, H.K.L., Liu, J.L.: A linear quad tree compression scheme for image encryption. Signal Process. 10(4), 279–290 (1997)

    Google Scholar 

  6. Cheng, H., Li, X.B.: Partial encryption of compressed image and videos. IEEE Trans. Signal Process. 48(8), 2439–2451 (2000)

    Article  ADS  Google Scholar 

  7. Zhang, G., Liu, Q.: A novel image encryption method based on total shuffling scheme. Opt. Commun. 284(12), 2775–2780 (2011)

    Article  ADS  Google Scholar 

  8. Scharinger, J.: Fast encryption of image data using chaotic Kolmogorov flow. J. Electron. Eng. 7(2), 318–325 (1998)

    Google Scholar 

  9. Wang, B., Sun, C.-C., Su, W.-C.: Shift-tolerance property of an optical double-random phase-encoding encryption system. Appl. Opt. 39(26), 4788–4793 (2000)

    Article  ADS  Google Scholar 

  10. Bahram, J., Arnaud, S., Guanshen, Z., et al.: Fault tolerance properties of a double phase encoding encryption technique. Opt. Eng. 36(4), 992–998 (1997)

    Article  Google Scholar 

  11. Frauel, Y., Castro, A., Naughton, T., et al.: Resistance of the double random phase encryption against various attacks. Opt. Exp. 15(16), 10253–10265 (2007)

    Article  ADS  Google Scholar 

  12. Peng, X., Zhang, P., Wei, H., et al.: Known-plaintext attack on optical encryption scheme based on double random phase keys. Opt. Lett. 31(8), 1044–1046 (2006)

    Article  ADS  Google Scholar 

  13. Carnicer, A., Montes-Usategui, M., Arcos, S., et al.: Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt. Lett. 30(13), 1644–1646 (2005)

    Article  ADS  Google Scholar 

  14. Peng, X., Wei, H., Zhang, P.: Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt. Lett. 31(22), 3261–3263 (2006)

    Article  ADS  Google Scholar 

  15. Shor, P.W.: In Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mex-ico, p. 124 (1994)

  16. Grover, L.K.: In Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, p. 212 (1996)

  17. Bennett, C.H., Brassard, G.: In Proceedings of IEEE International Conference on Computers, Systems and Signal, Bangalore, India, p.175 (1984)

  18. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  19. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  20. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference Quantum Information and Computation, pp. 137–147 (2003)

  21. Latorre, J.I.: Image compression and entanglement, arXiv:quant-ph/0510031(2005)

  22. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  24. Klappenecker, A., Rotteler, M.: Discrete cosine transforms on quantum computers. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, pp. 464–468 (2001)

  25. Tseng, C.C., Hwang, T.M.: Quantum circuit design of \(8\times 8\) discrete cosine transforms using its fast computation on graph. In: Proceedings of ISCAS 2005, pp. 828–831 (2005)

  26. Fijany, A., Williams, C.P.: Quantum wavelet transform: fast algorithm and complete circuits, URL: arXiv:quantph/9809004 (1998)

  27. Labunets, V., Labunets-Rundblad, E., Egiazarian, K., Astola, J.: Fast classical and quantum fractional Walsh transforms. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, pp. 558–563 (2001)

  28. Tseng, C.C., Hwang, T.M.: Quantum circuit design of \(8\times 8\) discrete Hartley transform. ISCAS III, 397–400 (2004)

    Google Scholar 

  29. Tseng, C.C., Hwang, T.M.: Quantum circuit design of discrete Hartley transform using recursive decomposition formula. ISCAS 1–6, 824–827 (2005)

    Google Scholar 

  30. Lomont, C.: Quantum convolution and quantum correlation algorithms are physically impossible, arXiv:quantph/0309070 (2003)

  31. Iliyasu, A.M., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image Geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2012)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. doi:10.1007/s11128-013-0561-5 (2013)

  35. Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Taylor and Francis Group, UK (2008)

    Book  MATH  Google Scholar 

  36. Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. In 2012 IEEE World Congress on Computational Intelligence, Brisbane, 10–15 June 2012, pp. 1–6 (2012)

  37. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewer for his constructive suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 61003290); Beijing Natural Science Foundation (Grant No. 4122008); Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No. CIT&TCD201304039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YG., Xia, J., Jia, X. et al. Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf Process 12, 3477–3493 (2013). https://doi.org/10.1007/s11128-013-0612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0612-y

Keywords

Navigation