[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Displaced rotations of coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose an approach with displaced states that can be used for rotations of coherent states. Our approach is based on representation of arbitrary one-mode pure state in free-travelling fields, in particular superposition of coherent states (SCSs), in terms of displaced number states with arbitrary amplitude of displacement. Optical scheme is developed for construction of displacing Hadamard gate for the coherent states. It is based on alternation of single photon additions and displacement operators (in general case, N-singe photon additions and N − 1-displacements are required) with seed coherent state to generate both even and odd displaced squeezed SCSs regardless of number of used photon additions. The optical scheme is sensitive to the seed coherent state provided that other parameters of the scheme are invariable. Output states approximate with high fidelity either even squeezed SCS or odd SCS shifted relative each other by some value. It enables to construct local rotations for coherent states, in particular, Hadamard gate being mainframe element for quantum computation with coherent states. The effects deteriorating quality of output states are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yurke B., Stoler D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)

    Article  ADS  Google Scholar 

  2. Schleich W., Pernigo M., Kien F.L.: Nonclassical state from two pseudoclassical states. Phys. Rev. A 44, 2172–2187 (1991)

    Article  ADS  Google Scholar 

  3. Malkin I.A., Manko V.I.: Dynamical Symmetries and Coherent States of Quantum Systems. Nauka, Moscow (1979)

    Google Scholar 

  4. Wilson D., Jeong H., Kim M.S.: Quantum nonlocality for a mixed entangled coherent state. J. Mod. Opt. 49, 851–864 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Jeong H., Son W., Kim M.S., Ahn D., Brukner C.: Quantum nonlocality test for continuous-variable states with dichotomic observables. Phys. Rev. A 67, 012106–012112 (2003)

    Article  ADS  Google Scholar 

  6. Stobi’nska M., Jeong H., Ralph T.C.: Violation of Bell’s inequality using classical measurements and nonlinear local operations. Phys. Rev. A 75, 052105–052110 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. van Enk S.J., Hirota O.: Entangled coherent states: teleportation and decohenrence. Phys. Rev. A 64, 022313–022318 (2001)

    Article  ADS  Google Scholar 

  8. Jeong H., Kim M.S., Lee J.: Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A 64, 052308–052314 (2001)

    Article  ADS  Google Scholar 

  9. Jeong H., Kim M.S.: Quantum nonlocality for a mixed entangled coherent state. Quantum Inf. Comput. 2, 208–221 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Jeong H., Kim M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305–042310 (2002)

    Article  ADS  Google Scholar 

  11. Ralph T.C., Gilchrist A., Milburn G.J., Munro W.J., Glancy S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319–042329 (2003)

    Article  ADS  Google Scholar 

  12. Munro W.J., Nemoto K., Milburn G.J., Braunstein S.L.: Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819–023824 (2002)

    Article  ADS  Google Scholar 

  13. Gerry C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dakna M., Anhut T., Opatrn’y T., Knöll L., Welsch D.-G.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)

    Article  ADS  Google Scholar 

  15. Lund A.P., Jeong H., Ralph T.C., Kim M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101–020104 (2004)

    Article  ADS  Google Scholar 

  16. Lance A.M., Jeong H., Grosse N.B., Symul T., Ralph T.C., Lam P.K.: Quantum-state engineering with continuous-variable postselection. Phys. Rev. A 73, 041801–041804 (2006)

    Article  ADS  Google Scholar 

  17. Jeong H., Lance A.M., Grosse N.B., Symul T., Lam P.L., Ralph T.C.: Conditional quantum-state engineering using ancillary squeezed-vacuum states. Phys. Rev. A 74, 033813–033823 (2006)

    Article  ADS  Google Scholar 

  18. Jeong H., Lund A.P., Ralph T.C.: Production of superpositions of coherent states in traveling optical fields with inefficient photon detection. Phys. Rev. A 72, 013801–013813 (2005)

    Article  ADS  Google Scholar 

  19. Kim M.S., Park E., Knight P.L., Jeong H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805–043810 (2005)

    Article  ADS  Google Scholar 

  20. Shigenari S., Tsujinoa K., Kannarib F., Sasaki M.: Analysis on generation schemes of Schrödinger cat-like states under experimental imperfections. Opt. Commun. 259, 758–764 (2006)

    Article  ADS  Google Scholar 

  21. Wenger J., Tualle-Brouri R., Grangier P.: Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601–153604 (2004)

    Article  ADS  Google Scholar 

  22. Ourjoumtsev A., Tualle-Brouri R., Laurat J., Grangier Ph.: Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006)

    Article  ADS  Google Scholar 

  23. Neergaard-Nielsen, J.S., B. Nielsen, M., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604–083607 (2006)

  24. Ourjoumtsev A., Jeong H., Tualle-Brouri R., Grangier Ph.: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  25. Marek P., Kim M.S.: Suitability of the approximate superposition of squeezed coherent states for various quantum protocols. Phys. Rev. A 78, 022309–022314 (2008)

    Article  ADS  Google Scholar 

  26. Marek P., Jeong H., Kim M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811–063818 (2008)

    Article  ADS  Google Scholar 

  27. Sasaki M., Takeoka M., Takahashi H.: Temporally multiplexed superposition states of continuous variables. Phys. Rev. A 77, 063840–063850 (2008)

    Article  ADS  Google Scholar 

  28. Takeoka M., Takahashi H., Sasaki M.: Large-amplitude coherent-state superposition generated by a time-separated two-photon subtraction from a continuous-wave squeezed vacuum. Phys. Rev. A 77, 062315–062323 (2008)

    Article  ADS  Google Scholar 

  29. Takahashi, H., Wakui, K., Suzuki, S., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction. arXiv:0806.2965

  30. Podoshvedov, S.A.: Generation of displaced squeezed superposition of coherent states. JETP 141(2), to be published

  31. Podoshvedov S.A., Kim J.: Dense coding by means of the displaced photon. Phys. Rev. A 77, 032319–032326 (2008)

    Article  ADS  Google Scholar 

  32. Podoshvedov S.A.: Displaced photon states as resource for dense coding. Phys. Rev. A 79, 012319–012325 (2009)

    Article  ADS  Google Scholar 

  33. Podoshvedov S.A.: Performance of a quantum key distribution with dual-rail displaced photon states. JETP 137, 656–667 (2010)

    Google Scholar 

  34. Lvovsky A.L., Hausen H., Aichele T., Benson O., Mlynek J., Schiller S.: Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402–050405 (2001)

    Article  ADS  Google Scholar 

  35. Lvovsky A.I., Babischev S.A.: Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801–011804 (2002)

    Article  ADS  Google Scholar 

  36. Dakna M., Clausen J., Knöll L., Welsch D.-G.: Generation of arbitrary quantum states of traveling fields. Phys. Rev. A 59, 1658–1661 (1999)

    Article  ADS  Google Scholar 

  37. Walls D.F., Milburn G.J.: Quantum optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  38. Zavatta A., Viciani S., Bellini M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)

    Article  ADS  Google Scholar 

  39. Zavatta A., Viciani S., Bellini M.: Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A 70, 053821–053826 (2004)

    Article  ADS  Google Scholar 

  40. Marek P., Fiurášek J.: Elementary gates for quantum information with superposed coherent states. Phys. Rev. A 82, 014304–014307 (2010)

    Article  ADS  Google Scholar 

  41. Neergaard-Nielsen J.S., Takeuchi M., Wakui K., Takahashi H., Hayasaka K., Takeoka M., Sasaki M.: Optical continuous-variable qubit. Phys. Rev. Lett. 105, 053602–053605 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Podoshvedov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podoshvedov, S.A. Displaced rotations of coherent states. Quantum Inf Process 11, 1809–1828 (2012). https://doi.org/10.1007/s11128-011-0338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0338-7

Keywords