Abstract
We propose an approach with displaced states that can be used for rotations of coherent states. Our approach is based on representation of arbitrary one-mode pure state in free-travelling fields, in particular superposition of coherent states (SCSs), in terms of displaced number states with arbitrary amplitude of displacement. Optical scheme is developed for construction of displacing Hadamard gate for the coherent states. It is based on alternation of single photon additions and displacement operators (in general case, N-singe photon additions and N − 1-displacements are required) with seed coherent state to generate both even and odd displaced squeezed SCSs regardless of number of used photon additions. The optical scheme is sensitive to the seed coherent state provided that other parameters of the scheme are invariable. Output states approximate with high fidelity either even squeezed SCS or odd SCS shifted relative each other by some value. It enables to construct local rotations for coherent states, in particular, Hadamard gate being mainframe element for quantum computation with coherent states. The effects deteriorating quality of output states are considered.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yurke B., Stoler D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)
Schleich W., Pernigo M., Kien F.L.: Nonclassical state from two pseudoclassical states. Phys. Rev. A 44, 2172–2187 (1991)
Malkin I.A., Manko V.I.: Dynamical Symmetries and Coherent States of Quantum Systems. Nauka, Moscow (1979)
Wilson D., Jeong H., Kim M.S.: Quantum nonlocality for a mixed entangled coherent state. J. Mod. Opt. 49, 851–864 (2002)
Jeong H., Son W., Kim M.S., Ahn D., Brukner C.: Quantum nonlocality test for continuous-variable states with dichotomic observables. Phys. Rev. A 67, 012106–012112 (2003)
Stobi’nska M., Jeong H., Ralph T.C.: Violation of Bell’s inequality using classical measurements and nonlinear local operations. Phys. Rev. A 75, 052105–052110 (2007)
van Enk S.J., Hirota O.: Entangled coherent states: teleportation and decohenrence. Phys. Rev. A 64, 022313–022318 (2001)
Jeong H., Kim M.S., Lee J.: Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A 64, 052308–052314 (2001)
Jeong H., Kim M.S.: Quantum nonlocality for a mixed entangled coherent state. Quantum Inf. Comput. 2, 208–221 (2002)
Jeong H., Kim M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305–042310 (2002)
Ralph T.C., Gilchrist A., Milburn G.J., Munro W.J., Glancy S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319–042329 (2003)
Munro W.J., Nemoto K., Milburn G.J., Braunstein S.L.: Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819–023824 (2002)
Gerry C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)
Dakna M., Anhut T., Opatrn’y T., Knöll L., Welsch D.-G.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)
Lund A.P., Jeong H., Ralph T.C., Kim M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101–020104 (2004)
Lance A.M., Jeong H., Grosse N.B., Symul T., Ralph T.C., Lam P.K.: Quantum-state engineering with continuous-variable postselection. Phys. Rev. A 73, 041801–041804 (2006)
Jeong H., Lance A.M., Grosse N.B., Symul T., Lam P.L., Ralph T.C.: Conditional quantum-state engineering using ancillary squeezed-vacuum states. Phys. Rev. A 74, 033813–033823 (2006)
Jeong H., Lund A.P., Ralph T.C.: Production of superpositions of coherent states in traveling optical fields with inefficient photon detection. Phys. Rev. A 72, 013801–013813 (2005)
Kim M.S., Park E., Knight P.L., Jeong H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805–043810 (2005)
Shigenari S., Tsujinoa K., Kannarib F., Sasaki M.: Analysis on generation schemes of Schrödinger cat-like states under experimental imperfections. Opt. Commun. 259, 758–764 (2006)
Wenger J., Tualle-Brouri R., Grangier P.: Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601–153604 (2004)
Ourjoumtsev A., Tualle-Brouri R., Laurat J., Grangier Ph.: Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006)
Neergaard-Nielsen, J.S., B. Nielsen, M., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604–083607 (2006)
Ourjoumtsev A., Jeong H., Tualle-Brouri R., Grangier Ph.: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007)
Marek P., Kim M.S.: Suitability of the approximate superposition of squeezed coherent states for various quantum protocols. Phys. Rev. A 78, 022309–022314 (2008)
Marek P., Jeong H., Kim M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811–063818 (2008)
Sasaki M., Takeoka M., Takahashi H.: Temporally multiplexed superposition states of continuous variables. Phys. Rev. A 77, 063840–063850 (2008)
Takeoka M., Takahashi H., Sasaki M.: Large-amplitude coherent-state superposition generated by a time-separated two-photon subtraction from a continuous-wave squeezed vacuum. Phys. Rev. A 77, 062315–062323 (2008)
Takahashi, H., Wakui, K., Suzuki, S., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction. arXiv:0806.2965
Podoshvedov, S.A.: Generation of displaced squeezed superposition of coherent states. JETP 141(2), to be published
Podoshvedov S.A., Kim J.: Dense coding by means of the displaced photon. Phys. Rev. A 77, 032319–032326 (2008)
Podoshvedov S.A.: Displaced photon states as resource for dense coding. Phys. Rev. A 79, 012319–012325 (2009)
Podoshvedov S.A.: Performance of a quantum key distribution with dual-rail displaced photon states. JETP 137, 656–667 (2010)
Lvovsky A.L., Hausen H., Aichele T., Benson O., Mlynek J., Schiller S.: Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402–050405 (2001)
Lvovsky A.I., Babischev S.A.: Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801–011804 (2002)
Dakna M., Clausen J., Knöll L., Welsch D.-G.: Generation of arbitrary quantum states of traveling fields. Phys. Rev. A 59, 1658–1661 (1999)
Walls D.F., Milburn G.J.: Quantum optics. Springer, Berlin (1994)
Zavatta A., Viciani S., Bellini M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)
Zavatta A., Viciani S., Bellini M.: Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A 70, 053821–053826 (2004)
Marek P., Fiurášek J.: Elementary gates for quantum information with superposed coherent states. Phys. Rev. A 82, 014304–014307 (2010)
Neergaard-Nielsen J.S., Takeuchi M., Wakui K., Takahashi H., Hayasaka K., Takeoka M., Sasaki M.: Optical continuous-variable qubit. Phys. Rev. Lett. 105, 053602–053605 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Podoshvedov, S.A. Displaced rotations of coherent states. Quantum Inf Process 11, 1809–1828 (2012). https://doi.org/10.1007/s11128-011-0338-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0338-7