[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On the impossibility of non-static quantum bit commitment between two parties

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Choi et al. proposed an assumption on Mayers–Lo–Chau (MLC) no-go theorem that the state of the entire quantum system is invariable to both participants before the unveiling phase. This makes us suspect that the theorem is only applicable to static quantum bit commitment (QBC). This paper clarifies that the MLC no-go theorem can be applied to not only static QBC, but also non-static one. A non-static QBC protocol proposed by Choi et al. is briefly reviewed and analyzed to work as a supporting example. In addition, a novel way to prove the impossibility of the two kinds of QBC is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67(1), article no. 012304 (2003)

    Google Scholar 

  2. Crepeau C.: Quantum oblivious transfer. J. Mod. Opt. 41(12), 2445 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Brassard G., Chaum D., Crepeau C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crepeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Advances in Cryptology-Crypto’95, Lecture Notes in Computer Science, vol. 963, pp. 110–123. Springer, New York (1995)

  5. Naor M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151 (1994)

    Google Scholar 

  6. Naor M., Ostrovsky R., Venkatesan R., Yung M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179 (1984)

  8. Ekert A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Brassard, G., Crepeau, C.: Quantum bit commitment and coin tossing protocols. In: Advances in Cryptology-Crypto’90, Lecture Notes in Computer Science, vol. 537, pp. 49–61. Springer, New York (1991)

  11. Brassard, G., Crepeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp. 362–371 (1993)

  12. Ardehali, M.: A quantum bit commitment protocol based on EPR states. ArXiv:quant-ph/9505019v5 (1996)

  13. Mayers, D.: The trouble with quantum bit commitment. ArXiv:quant-ph/9603015v3 (1996)

  14. Mayers D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414 (1997)

    Article  ADS  Google Scholar 

  15. Lo H.K., Chau H.F.: Is quantum bit commitment really possible?. Phys. Rev. Lett. 78(17), 3410 (1997)

    Article  ADS  Google Scholar 

  16. Kent A.: Unconditionally secure bit commitment. Phys. Rev. Lett. 83(7), 1447 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kent A.: Secure classical bit commitment using fixed capacity communication channels. J. Cryptol. 18(4), 313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Damgard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: Proceedings of the 46th Annual Symposium on Foundations of Computer Science, pp. 449–458 (2005)

  19. Hardy, L., Kent, A.: Cheat sensitive quantum bit commitment. Phys. Rev. Lett. 92(15), article no. 157901 (2004)

    Google Scholar 

  20. Ishizaka, S.: Dilemma that cannot be resolved by biased quantum coin flipping. Phys. Rev. Lett. 100(7), article no. 070501 (2008)

    Google Scholar 

  21. Wehner, S., Curty, M., Schaffner, C., Lo, H.K.: Implementation of two-party protocols in the noisy-storage model. Phys. Rev. A 81(5), article no. 052336 (2010)

    Google Scholar 

  22. Choi, J.W., Hong, D., Chang, K.Y., Chi, D.P., Lee, S.: Non-static quantum bit commitment. In: Proceedings of the 9th Asian Conference on Quantum Information Science, pp. 205–206. Also available at: arXiv:0901.1178v4 (2009)

  23. D’Ariano, G.M., Kretschmann, D., Schlingemann, D., Werner, R.F.: Reexamination of quantum bit commitment: the possible and the impossible. Phys. Rev. A 76(3), article no. 032328 (2007)

    Google Scholar 

  24. Gisin N.: Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62(4), 363 (1989)

    MathSciNet  Google Scholar 

  25. Hughstona L.P., Jozsa R., Wootters W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  26. Jozsa R.: Fidelity for mixed quantum states. J. Mod. Optics 41(12), 2315 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Li, C., Long, D. et al. On the impossibility of non-static quantum bit commitment between two parties. Quantum Inf Process 11, 519–527 (2012). https://doi.org/10.1007/s11128-011-0259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0259-5

Keywords

Navigation