Abstract
In this paper, we give the geometric pictures for quantum search algorithms in decomposed form, namely in terms of a phase rotation of the marked state and a phase rotation about the average. We apply this formalism to various quantum search algorithms, and give explicit interpretations of the standard Grover algorithm, arbitrary phase rotations, phase matching and fixed-point search algorithm. The pictures straightforwardly show how state vectors evolve during the search process. These results are helpful in understanding how the quantum search algorithms work.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Grover L.K.: Quantum mechanics helps in searching for a Needle in a Haystack. Phys. Rev. Lett. 79, 325 (1997)
Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)
Zalka C.: Grovers quantum searching algorithm is optimal. Phys. Rev. A 60, 2746 (1999)
Long G.L., Zhang W.L., Li Y.S., Niu L.: Arbitrary phase rotation of the marked state cannot be used for Grover’s quantum search algorithm. Commun. Theor. Phys. 32, 335–338 (1999)
Long G.L., Li Y.S., Zhang W.L., Niu L.: Phase matching in quantum searching. Phys. Lett. A. 262, 27 (1999)
Long G.L. et al.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A. 294, 143 (2002)
Long G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A. 64, 022307 (2001)
Li S.S., Long G.L., Feng Feng-Shan Baii S.L., Feng Song-Lin, Zheng Hou-Zhi.: Quantum computing. PNAS 98, 11847 (2001)
Long G.L., Liu Y.: Search an unsorted database with quantum mechanics. Front. Comput. Sci. China 1, 247–271 (2007)
Bhattacharya N., van Linden van den Heuvell H.B., Spreeuw R.J.C.: Implementation of quantum Search algorithm using Classical Fourier Optics. Phys. Rev. Lett. 88, 137901 (2002)
Long G.L. et al.: Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001)
Puentes G., La Mela C., Ledesma S., Iemmi C., Paz Pablo J., Saraceno M.: Optical simulation of quantum algorithms using programmable liquid-crystal displays. Phys. Rev. A 69, 042319 (2004)
Long G.L., Li Y.S., Zhang W.L., Tu C.C.: Dominant gate imperfection in Grovers quantum search algorithm. Phys. Rev. A 61, 042305 (2000)
Feng M.: Grover search with pairs of trapped ions. Phys. Rev. A 63, 052308 (2001)
Shapira D., Mozes S., Biham O.: Effect of unitary noise on Grovers quantum search algorithm. Phys. Rev. A 67, 042301 (2003)
Fang Y., Kaszlikowski D., Chin C., Tay K., Kwek L.C., Oh C.H.: Entanglement in the Grover search algorithm. Phys. Lett. A 345, 265 (2005)
Deng Z.J., Feng M., Gao K.L.: Simple scheme for the two-qubit Grover search in cavity QED. Phys. Rev. A 72, 034306 (2005)
Choo Keng W.: Measuring peptide mass spectrum correlation using the quantum Grover algorithm. Phys. Rev. A 75, 031919 (2007)
Zheng X.-H., Dong P., Xue Z., Cao Z.: Implementation of the Grover search algorithm with Josephson charge qubits. Phys. C 453, 76 (2007)
Hijmans Tom W., Huussen Tycho N., Spreeuw Robert J.C.: Time-and frequency-domain solutions in an optical analogue of Grover’s search algorithm. J. Opt. Soc. Am. B 24, 2 (2007)
Tulsi A.: Quantum computers can search rapidly by using almost any selective transformation. Phys. Rev. A 78, 022332 (2008)
Linington I.E., Ivanov P.A., Vitanov N.V.: Quantum search in a nonclassical database of trapped ions. Phys. Rev. A 79, 012322 (2009)
Torosov Boyan T., Vitanov Nikolay V.: Phase shifts in nonresonant coherent excitation. Phys. Rev. A 79, 042108 (2009)
Toyama F.M., van Dijk W., Nogami Y., Tabuchi M., Kimura Y.: Multiphase matching in the Grover algorithm. Phys. Rev. A 77, 042324 (2008)
Grover L.K.: Fixed-Point quantum search. Phys. Rev. Lett. 95, 150501 (2005)
Xiao L., Jones Jonathan A.: Error tolerance in an NMR implementation of Grovers fixed-point quantum search algorithm. Phys. Rev. A 72, 032326 (2005)
Li D., Chen J.P., Li X., Huang H., Li X.: Performance of equal phase-shift search for one iteration. Eur. Phys. J.D 45, 335 (2007)
Li D., Li X., Huang H., Li X.: Fixed-point quantum search for different phase shifts. Phys. Lett. A 362, 260 (2007)
Long G.L., Liu Y.: Duality computing in Quantum computers. Comm. Theor. Phys. 50, 1303 (2008)
Hao L., Liu D., Long G.: An N/4 fixed-point duality Quantum search algorithm. Sci. China-Phys. Mech. Astron. 53, 1765 (2010)
Pèrez A., Romanelli A.: Nonadiabatic Quantum search algorithms. Phys. Rev. A 76, 052318 (2007)
Rezakhani A.T., Pimachev A.K., Lidar D.A.: Accuracy versus run time in an adiabatic quantum search. Phys. Rev. A 82, 052305 (2010)
Wang H., Zhang S., Zhao Y.: Phase matching in fixed-point Quantum Search Algorithm. Int. J. Quan. Inform. 7, 1269 (2009)
Wocjan P., Chiang C., Nagaj D., Abeyesinghe A.: Quantum algorithm for approximating partition functions. Phys. Rev. A 80, 022340 (2009)
Iwai T., Hayashi N., Mizobe K.: The geometry of entanglement and Grovers algorithm. J. Phys. A: Math. Theor. 41, 105202 (2008)
Mizel Ari: Critically damped Quantum search. Phys. Rev. Lett. 102, 150501 (2009)
Grover L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709 (1997)
Yu S., Sun C.: Canonical quantum teleportation. Phys. Rev. A 61, 022310 (2000)
Long G.L., Tu C.C., Li Y.S., Zhang W.L., Yan H.Y.: An SO(3) picture for quantum searching. J. Phys. A 34, 861 (2001)
Braunstein Samuel L., Choi B., Ghosh S., Maitra S.: Exact quantum algorithm to distinguish Boolean functions of different weights. J. Phys. A: Math. Theor. 40, 8441 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, LJ., Li, YS., Hao, L. et al. Geometric pictures for quantum search algorithms. Quantum Inf Process 11, 325–340 (2012). https://doi.org/10.1007/s11128-011-0249-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0249-7