[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Scalable Linear-Optical Quantum Computers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Scalable quantum computation with linear optics was considered to be impossible due to the lack of efficient two-qubit logic gates, despite the ease of implementation of one-qubit gates. Two-qubit gates necessarily need a non-linear interaction between the two photons, and the efficiency of this non-linear interaction is typically very small in bulk materials. However, it has recently been shown that this barrier can be circumvented with effective non-linearities produced by projective measurements, and with this work linear-optical quantum computing becomes a new avenue towards scalable quantum computation. We review several issues concerning the principles and requirements of this scheme.

PACS: 03.67.Lx, 03.67.Pp, 42.50.Dv, 42.65.Lm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

  2. G. G. Lapaire, P. Kok, J. P. Dowling, and J. E. Sipe, Phys. Rev. A 68, 042314 (2003).

    Google Scholar 

  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 64, 062311 (2001).

    Google Scholar 

  4. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66, 052305 (2002).

    Google Scholar 

  5. D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).

  6. J. D. Franson et al., Phys. Rev. Lett. 89, 137901 (2002).

  7. E. Knill, R. Laflamme, and G. J. Milburn, quant-ph/0006120 (2000).

  8. D. F. V. James and P. G. Kwiat, Phys. Rev. Lett. 89, 183601 (2002).

    Google Scholar 

  9. A. Imamoglu, Phys. Rev. Lett. 89, 163602 (2002).

    Google Scholar 

  10. E. Waks, et al., IEEE J. Sel. Top. Quant. Ele. 9, 1502 (2003).

  11. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 68, 032316 (2003).

    Google Scholar 

  12. J. L. O'Brien et al., Nature 426, 264 (2003).

  13. K. Sanaka et al., Phys. Rev. Lett. 92, 017902 (2004).

  14. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. Lett. 88, 257902 (2002).

    Google Scholar 

  15. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. Lett. A 69, 042306 (2004).

    Google Scholar 

  16. D. Achilles et al. (in press) J. Mod. Opt. quant-ph/0310183 (2003); H. Lee et al., J. Mod. Opt., quant-ph/0310161 (2003).

  17. T. B. Pittman and J. D. Franson, Phys. Rev. Lett. 90, 240401 (2003).

    Google Scholar 

  18. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66, 042303 (2002).

    Google Scholar 

  19. T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002).

    Google Scholar 

  20. R. M. Gingrich et al., Phys. Rev. Lett. 91, 217901 (2003).

  21. G. Nogues et al., Nature 400, 239 (1999).

  22. P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814 (2002).

  23. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

    Google Scholar 

  24. P. Kok, C. P. Williams, and J. P. Dowling, Phys. Rev. A 68, 022301 (2003).

    Google Scholar 

  25. R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Google Scholar 

  26. N. Yoran and B. Reznik, Phys. Rev. Lett. 91, 037903 (2003).

    Google Scholar 

  27. M. Nielsen, quant-ph/0402005 (2004).

  28. J. D. Franson, T. B. Pittman, and B. C. Jacobs, quant-ph/0401133 (2004).

  29. J. P. Dowling and G. J. Milburn, Phil. Trans. R. Soc. Lond. A 361, 1655 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowling, J.P., Franson, J.D., Lee, H. et al. Towards Scalable Linear-Optical Quantum Computers. Quantum Information Processing 3, 205–213 (2004). https://doi.org/10.1007/s11128-004-9419-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-9419-1