[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Assessment of maize yield and phenology by drone-mounted superspectral camera

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The capability of unmanned aerial vehicle (UAV) spectral imagery to assess maize yield under full and deficit irrigation is demonstrated by a Tetracam MiniMCA12 11 bands camera. The MiniMCA12 was used to image an experimental field of 19 maize hybrids. Yield prediction models were explored for different maize development stages, with the best model found using maize plant development stage reproductive 2 (R2) for both maize grain yield and ear weight (respective R2 values of 0.73 and 0.49, and root mean square error of validation (RMSEV) values of 2.07 and 3.41 metric tons per hectare using partial least squares regression (PLS-R) validation models). Models using vegetation indices for inputs rather than superspectral data showed similar R2 but higher RMSEV values, and produced best results for the R4 development stage. In addition to being able to predict yield, spectral models were able to distinguish between different development stages and irrigation treatments. These abilities potentially allow for yield prediction of maize plants whose development stage and water status are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASD:

Analytical spectral devices

CC:

Canopy cover

CMOS:

Complementary metal oxide semiconductor

CO2 :

Carbon dioxide

GCPs:

Ground control points

GNDVI:

Green Normalized Difference Vegetation Index

GNSS:

Global navigation satellite system

ILS:

Incident light sensor

LAI:

Leaf area index

NDREI:

Normalized Difference Red-Edge Index

NDVI:

Normalized Difference Vegetation Index

NGRDI:

Normalized Green Red Difference Index

NIR:

Near-infrared

OSAVI:

Optimized soil adjusted vegetation index

PAR:

Photosynthetically active radiation

PLS-DA:

Partial least squares discriminant analysis

PLS-R:

PLS regression

PW2:

PixelWrench2

R:

Reproductive

R2 :

Coefficient of determination

RARSa:

Ratio analysis of reflectance spectra chlorophyll a

RARSb:

Ratio analysis of reflectance spectra chlorophyll b

RARSc:

Ratio analysis of reflectance spectra carotenoid

REIP:

Red-edge inflection point

RGB:

Red, green and blue

RMSE:

Root mean square error

RMSEC:

RMSE for calibration

RMSECV:

RMSE for cross validation

RMSEV:

RMSEC for validation

rRMSE:

Relative RMSE

RTK:

Real time kinematic

RWC:

Relative water content

SIPI:

Structure insensitive pigment index

SR:

Simple ratio

t/ha:

Tons per hectare

TCARI:

Transformed Chlorophyll Absorption Reflectance Index

TGI:

Triangular Greenness Index

TVI:

Triangular Vegetation Index

UAV:

Unmanned aerial vehicles

V:

Vegetative

VENμS:

Vegetation and Environmental New micro Spacecraft

VIP:

Variable importance in projection

VIs:

Vegetation Indices

VT:

Vegetative tasseling

References

  • Adao, T., Hruska, J., Padua, L., Bessa, J., Peres, E., Morais, R., et al. (2017). Hyperspectral Imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing. https://doi.org/10.3390/rs9111110.

    Article  Google Scholar 

  • Akins, M. S., & Shaver, R. D. (2014). Effect of corn snaplage on lactation performance by dairy cows. The Proffecional Animal Scientist,30, 86–92.

    Article  Google Scholar 

  • Almendros, G. M. (2008). Humic substances. In W. Cheswarth (Ed.), Encyclopedia of soil science (pp. 315–323). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., et al. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology,41(1), 68–79. https://doi.org/10.1071/fp13126.

    Article  Google Scholar 

  • Araus, J. L., Serret, M. D., & Edmeades, G. O. (2012). Phenotyping maize for adaptation to drought. Frontiers in Physiology. https://doi.org/10.3389/fphys.2012.00305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avramova, V., AbdElgawad, H., Zhang, Z. F., Fotschki, B., Casadevall, R., Vergauwen, L., et al. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology,169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baret, F., Jacquemoud, S., Guyot, G., & Leprieur, C. (1992). Modeled analysis of the biophysical nature of spectral shifts and comparison with information-content of broad bands. Remote Sensing of Environment,41(2–3), 133–142.

    Article  Google Scholar 

  • Barnaby, J. Y., Kim, M., Bauchan, G., Bunce, J., Reddy, V., & Sicher, R. C. (2013). Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PLoS ONE. https://doi.org/10.1371/journal.pone.0077145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett, J. P. (1974). Coefficient of determination—Some limitations. American Statistician,28(1), 19–20. https://doi.org/10.2307/2683523.

    Article  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences,15(3), 413–428.

    Article  Google Scholar 

  • Ben-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment,61(1), 1–15. https://doi.org/10.1016/s0034-4257(96)00120-4.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment,76(2), 156–172.

    Article  Google Scholar 

  • Burkart, A., Hecht, V. L., Kraska, T., & Rascher, U. (2018). Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precision Agriculture,19(1), 134–146. https://doi.org/10.1007/s11119-017-9504-y.

    Article  Google Scholar 

  • Carletti, G., Nervo, G., & Cattivelli, L. (2014). Flavonoids and Melanins: A common strategy across two kingdoms. International Journal of Biological Sciences,10(10), 1159–1170. https://doi.org/10.7150/ijbs.9672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappelle, E. W., Kim, M. S., & McMurtrey, J. E. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,39(3), 239–247. https://doi.org/10.1016/0034-4257(92)90089-3.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement,20(1), 37–46.

    Article  Google Scholar 

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. Isprs Journal of Photogrammetry and Remote Sensing,92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013.

    Article  Google Scholar 

  • Curran, P. (1989). Remote sensing of foliar chemistry. Remote Sensing of the Environment,30, 271–278.

    Article  Google Scholar 

  • Darby, H., & Lauer, J. (2006). Critical stages in the life of a corn plant. Retrieved July 8, 2017, from http://corn.agronomy.wisc.edu/Management/pdfs/CriticalStages.pdf.

  • Decagon Devices, I. (2016). AccuPAR PAR/LAI ceptometer, model LP-80. Operator’s manual. WA, USA: Pullman.

  • Duvick, D. N. (2005). Genetic progress in yield of united states maize. Maydica,50(3–4), 193–202.

    Google Scholar 

  • FAO (2016) ‘Crops world wide area harvested and production’ Fao. Retrieved April 27, 2018, from http://www.fao.org/faostat/en/#data/QC.

  • Farrell, M., Gili, A., & Noellemeyer, E. (2018). Spectral indices from aerial images and their relationship with properties of a corn crop (journal article). Precision Agriculture. https://doi.org/10.1007/s11119-018-9570-9.

    Article  Google Scholar 

  • Ferraretto, L. F., Shaver, R. D., & Luck, B. D. (2018). Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. Journal of Dairy Science,101(5), 3937–3951. https://doi.org/10.3168/jds.2017-13728.

    Article  CAS  PubMed  Google Scholar 

  • Ferrio, J. P., Villegas, D., Zarco, J., Aparicio, N., Araus, J. L., & Royo, C. (2005). Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Crops Research,94(2–3), 126–148. https://doi.org/10.1016/j.fcr.2004.12.002.

    Article  Google Scholar 

  • Frei, M. (2013). Lignin: Characterization of a multifaceted crop component. Sci World J,13, 436517. https://doi.org/10.1155/2013/436517.

    Article  CAS  Google Scholar 

  • Gausman, H. (1985). Plant leaf optical properties in visible and Near Infrared light. Lubbock TX, USA: Texas Tech Press.

    Google Scholar 

  • Geipel, J., Link, J., & Claupein, W. (2014). Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sensing,6(11), 10335–10355. https://doi.org/10.3390/rs61110335.

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,58(3), 289–298.

    Article  Google Scholar 

  • Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B-Biology,22(3), 247–252. https://doi.org/10.1016/1011-1344(93)06963-4.

    Article  CAS  Google Scholar 

  • Gore, M. A., Chia, J. M., Elshire, R. J., Sun, Q., Ersoz, E. S., Hurwitz, B. L., et al. (2009). A first-generation haplotype map of maize. Science,326(5956), 1115–1117. https://doi.org/10.1126/science.1177837.

    Article  CAS  PubMed  Google Scholar 

  • Guyot, G., & Baret, F. (1988). Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. Esa 4th International Colloquium “Spectral signatures of objects in remote sensing”. 18–22 January. Aussois: Paris: ESA pablication, pp. 279–286.

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment,81(2–3), 416–426.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,86, 542–553.

    Article  Google Scholar 

  • Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., & bonfil, D. (2011). LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment,115, 2141–2151.

    Article  Google Scholar 

  • Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing,4(2), 273–288.

    Article  Google Scholar 

  • Hunt, E. R., Jr., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote sensing leaf chlorophyll content using a Visible Band Index. Agronomy Journal,103(4), 1090–1099. https://doi.org/10.2134/agronj2010.0395.

    Article  Google Scholar 

  • Inman, D., Khosla, R., Reich, R. M., & Westfall, D. G. (2007). Active remote sensing and grain yield in irrigated maize. Precision Agriculture,8(4–5), 241–252.

    Article  Google Scholar 

  • Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner, G. P., et al. (2016). Monitoring plant functional diversity from space. Nature Plants. https://doi.org/10.1038/nplants.2016.24.

    Article  PubMed  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology,50(4), 663–670. https://doi.org/10.2307/1936256.

    Article  Google Scholar 

  • Kirchgessner, N., Liebisch, F., Yu, K., Pfeifer, J., Friedli, M., Hund, A., et al. (2016). The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Functional Plant Biology,44(1), 154–168.

    Article  Google Scholar 

  • Laliberte, A. S., Goforth, M. A., Steele, C. M., & Rango, A. (2011). Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sensing,3(11), 2529–2551. https://doi.org/10.3390/rs3112529.

    Article  Google Scholar 

  • Le Gal, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants,4, 112–166. https://doi.org/10.3390/plants4010112.

    Article  CAS  Google Scholar 

  • Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., et al. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology,140(2), 779–790. https://doi.org/10.1104/pp.105.073957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizotte, P. L., & Savoie, P. (2013). Spring harvest of corn stover for animal bedding with a self-loading wagon (Article). Applied Engineering in Agriculture,29(1), 25–31.

    Article  Google Scholar 

  • Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., & Ort, D. R. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science,312(5782), 1918–1921. https://doi.org/10.1126/science.1114722.

    Article  CAS  PubMed  Google Scholar 

  • Ma, B. L., Morrison, M. J., & Dwyer, L. M. (1996). Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agronomy Journal,88(6), 915–920.

    Article  Google Scholar 

  • Mansouri-Far, C., Sanavy, S., & Saberali, S. F. (2010). Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural Water Management,97(1), 12–22. https://doi.org/10.1016/j.agwat.2009.08.003.

    Article  Google Scholar 

  • Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics,16(4), 237–251. https://doi.org/10.1038/nrg3901.

    Article  CAS  PubMed  Google Scholar 

  • Musumarra, G., Barresi, V., Condorelli, D. F., Fortuna, C. G., & Scire, S. (2004). Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis. Journal of Chemometrics,18(3–4), 125–132. https://doi.org/10.1002/cem.846.

    Article  CAS  Google Scholar 

  • Najafinezhad, H., Sarvestani, Z. T., Sanavy, S., & Naghavi, H. (2015). Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Archives of Agronomy and Soil Science,61(7), 891–906. https://doi.org/10.1080/03650340.2014.959938.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., & Lee, B. W. (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy,24(4), 349–356.

    Article  Google Scholar 

  • Nguy-Robertson, A., Gitelson, A., Peng, Y., Walter-Shea, E., Leavitt, B., & Arkebauer, T. (2013). Continuous monitoring of crop reflectance, vegetation fraction, and identification of developmental stages using a four band radiometer. Agronomy Journal,105(6), 1769–1779. https://doi.org/10.2134/agronj2013.0242.

    Article  Google Scholar 

  • Norman, J. M., & Jarvis, P. G. (1975). Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.): V. radiation penetration theory and a test case. Journal of Applied Ecology,12(3), 839–878. https://doi.org/10.2307/2402094.

    Article  Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica,31(2), 221–230.

    CAS  Google Scholar 

  • Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications. https://doi.org/10.1038/ncomms6989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey-Carames, C., Diago, M. P., Martin, M. P., Lobo, A., & Tardaguila, J. (2015). Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sensing,7(11), 14458–14481. https://doi.org/10.3390/rs71114458.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment,55(2), 95–107.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973) Monitoring vegetation systems in the Great Plains with ERTS In Third Earth Resources Technology Satellite -1. December. Goddard Space Flight Center: NASA pp. 309–317.

  • Sanchez, R. A., Hall, A. J., Trapani, N., & Dehunau, R. C. (1983). Effects of water stress on the chlorophyll content, nitrogen level and photosynthesis of leaves of two maize genotypes. Photosynthesis Research,4(1), 35–47. https://doi.org/10.1007/bf00041799.

    Article  CAS  PubMed  Google Scholar 

  • Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., et al. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy,70, 112–123. https://doi.org/10.1016/j.eja.2015.07.004.

    Article  Google Scholar 

  • Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., et al. (2001). Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal,93(3), 583–589.

    Article  Google Scholar 

  • Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist,163(3), 547–561. https://doi.org/10.1111/j.1469-8137.2004.01126.x.

    Article  CAS  Google Scholar 

  • Thomason, W. E., Phillips, S. B., & Raymond, F. D. (2007). Defining useful limits for spectral reflectance measures in corn. Journal of Plant Nutrition,30(7–9), 1263–1277. https://doi.org/10.1080/01904160701555176.

    Article  CAS  Google Scholar 

  • Tollenaar, M., & Lee, E. A. (2006). Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica,51(2), 399–408.

    Google Scholar 

  • Townsend, P. A., Green, R. O., Campbell, P. K., Cavender-Bares, J., Clark, M. L., Couture, J. J., et al. (2016). Global terrestrial ecosystem functioning and biogeochemical processes. Retrieved April 04, 2017, from https://hyspiri.jpl.nasa.gov/downloads/RFI2_HyspIRI_related_160517/RFI2_final_Ecosystem_TownsendPhilipA.pdf.

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment,8(2), 127–150.

    Article  Google Scholar 

  • Vergara-Diaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., et al. (2016). A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vina, A., Gitelson, A. A., Rundquist, D. C., Keydan, G., Leavitt, B., & Schepers, J. (2004). Remote sensing—Monitoring maize (Zea mays L.) phenology with remote sensing. Agronomy Journal,96(4), 1139–1147.

    Article  Google Scholar 

  • Wang, X. P., Guo, N., & Wang, J. (2007). Research on hyperspectral reflectance characteristics for spring wheat in rainfed agriculture areas of loess plateau. Igarss,1–12, 3293–3296.

    Google Scholar 

  • Weber, V. S., Araus, J. L., Cairns, J. E., Sanchez, C., Melchinger, A. E., & Orsini, E. (2012). Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Research,128, 82–90. https://doi.org/10.1016/j.fcr.2011.12.016.

    Article  Google Scholar 

  • Wise, B. M., Gallagher, N. B., Bro, R., Shaver, J. M., Winding, W., & Koch, R. S. (2006) ‘PLS_Toolbox Version 4.0 ‘ for use with MATLAB. May 18, 2015. Wenatchee, WA, USA: Eigenvector Research, Inc., p. 414. Retrieved from http://212.51.214.51/jsurmacki/pliki/zajecia/LMDiT/cw3/PLS_Manual_4.pdf.

  • Wold, S., Johansson, E., & Cocchi, M. (1993). PLS- partial least squars projections to latent structures. In H. Kubinyi (Ed.), 3D QSAR in drug design: Theory, methods, and applications (pp. 523–550). Leiden: ESCOM.

    Google Scholar 

  • Xie, L., Ying, Y., & Ying, T. (2007). Quantification of chlorophyll content and classification of nontransgenic and transgenic tomato leaves using visible/near-infrared diffuse reflectance spectroscopy. Journal of Agricultural and Food Chemistry,55(12), 4645–4650. https://doi.org/10.1021/jf063664m.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Z. T., Qin, Q. X., Wu, F. F., Zhang, J. M., Chen, T. T., Sun, Q., et al. (2015). Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize. Euphytica,205(1), 25–35. https://doi.org/10.1007/s10681-015-1380-9.

    Article  CAS  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konnzak, C. F. (1974). A decimal code for the growth stages in cereals. Weed Research,14(6), 415–421.

    Article  Google Scholar 

  • Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-Tejada, P. J., et al. (2015). Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. https://doi.org/10.1186/s13007-015-0078-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Israeli Ministry of Agriculture and Rural Development (Eugene Kandel Knowledge Centers) as part of the Root of the Matter - The root zone knowledge center for leveraging modern agriculture (Contract No. 16-34-0005). The postdoctoral Pratt foundation partially supported Ittai Herrmann. The Townsend lab received support from USDA Hatch funding (Project WIS01874). The authors would like to thank: Alexander Goldberg for all his help in the field and much beyond; Offir Matsrafi for his long term and long distance GIS support; Michael Travis from the University of Wisconsin-Extension, Pepin County for sharing his knowhow regarding corn cultivation in the Midwest; Aditya Singh for his insights; Ben Spaier for his comments, questions and proofreading; Evogene Ltd.: agronomist Mor Manor and his team; phenotyping team, led by Raanan Ganor; sampling team, led by Sara Koretzki; data and imaging team, led by Yogev Montekyo; and R&D Researchers that helped and supported planning and management, especially Inbal Dangoor, Ronit Rimon Knopf and Alon Glick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ittai Herrmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, I., Bdolach, E., Montekyo, Y. et al. Assessment of maize yield and phenology by drone-mounted superspectral camera. Precision Agric 21, 51–76 (2020). https://doi.org/10.1007/s11119-019-09659-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09659-5

Keywords

Navigation