[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

Deeper insights into the resistance response of Cajanus platycarpus were obtained based on comparative transcriptomics under Helicoverpa armigera infestation.

Abstract

Devastation by pod borer, Helicoverpa armigera is one of the major factors for stagnated productivity in Pigeonpea. Despite possessing a multitude of desirable traits including pod borer resistance, wild relatives of Cajanus spp. have remained under-utilized due to linkage drag and cross-incompatibility. Discovery and deployment of genes from them can provide means to tackle key pests like H. armigera. Transcriptomic differences between Cajanus platycarpus and Cajanus cajan during different time points (0, 18, 38, 96 h) of pod borer infestation were elucidated in this study. For the first ever time, we demonstrated captivating variations in their response; C. platycarpus apparently being reasonably agile with effectual transcriptomic reprogramming to deter the insect. Deeper insights into the differential response were obtained by identification of significant GO-terms related to herbivory followed by combined KEGG and ontology analyses. C. platycarpus portrayed a multilevel response with cardinal involvement of SAR, redox homeostasis and reconfiguration of primary metabolites leading to a comprehensive defense response. The credibility of RNA-seq analyses was ascertained by transient expression of selected putative insect resistance genes from C. platycarpus viz., chitinase (CHI4), Alpha-amylase/subtilisin inhibitor (IAAS) and Flavonoid 3_5 hydroxylase (C75A1) in Nicotiana benthamiana followed by efficacy analysis against H. armigera. qPCR validated results of the study provided innovative insights and useful leads for development of durable pod borer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All clean reads were deposited in National Center for Biotechnology Information (NCBI) Short Read Archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra) and can be accessed with SRA accession numbers—SRR6785591, SRR6785590, SRR6785593, SRR6785592, SRR8208902, SRR8208913, SRR8208906, SRR8208905, SRR8208904, SRR8208903, SRR8208910, SRR8208909, SRR8208912, SRR8208911, SRR8208908, SRR8208907.

References

  • Bankar KG, Todur VN, Shukla RN, Vasudevan M (2015) Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler. Genom Data 5:352–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Blank LM, Leathers CR (1963) Environmental and other factors influencing development of south western cotton rust (Puccinia stakmanii). Phytopathol 53:921–928

    Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Chitti BG, Sharma HC, Madhumati T, Raghavaiah G, Krishna MKVM, Rao VS (2014) A semi-synthetic chickpea flour based diet for long-term maintenance of laboratory culture of Helicoverpa armigera. Indian J Entomol 76:336–340

    Google Scholar 

  • Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16:29120–29133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary AK, Raje RS, Datta S, Sultana R, Ontagodi T (2013) Conventional and molecular approaches towards genetic improvement in pigeonpea for insects resistance. Am J Plant Sci 4:372–385

    Article  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S (2007) Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ 30:187–201

    Article  CAS  PubMed  Google Scholar 

  • Essmann J, Schmitz-Thom I, Schon H, Sonnewald S, Weis E, Scharte J (2008) RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol 147:1288–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq S, Azam F (2001) Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives. Hereditas 135:211–215

    Article  CAS  PubMed  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. Eur J Biochem 269:397–412

    Article  CAS  PubMed  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatz C (2013) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant Microbe Interact 26:151–159

    Article  CAS  PubMed  Google Scholar 

  • Grene R (2002) Oxidative stress and acclimation mechanisms in plants. The Arabidopsis Book/American Society of Plant Biologists. https://doi.org/10.1199/tab.0036.1

  • Guillet G, De Luca V (2005) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol 137:692–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes PM, Guimaraes LA, Morgante CV, Silva OB Jr, Araujo ACG, Martins AC, Saraiva MA, Oliveira TN, Togawa RC, Leal-Bertioli SC, Bertioli DJ (2015) Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoS ONE 10:e0140937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Prot 8:1494

    Article  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi V, Jander G (2009) Arabidopsis methionine γ-lyase is regulated according to isoleucine biosynthesis needs but plays a subordinate role to threonine deaminase. Plant Physiol 151:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khajuria C, Wang H, Liu X, Wheeler S, Reese JC, El Bouhssini M, Whitworth RJ, Chen MS (2013) Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genom 14:423

    Article  CAS  Google Scholar 

  • Khoury CK, Castañeda-Alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, van der Maesen LJG, Upadhyaya HD, Ramírez-Villegas J, Jarvis A (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Article  Google Scholar 

  • Kovacs MIP, Howes NK, Clarke JM, Leisle D (1998) Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6b) substitution. J Cereal Sci 27:47–51

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9:357

    Article  CAS  Google Scholar 

  • Lawrence SD, Novak NG (2006) Expression of poplar chitinase in tomato leads to inhibition of development in Colorado potato beetle. Biotechnol Lett 28:593–599

    Article  CAS  PubMed  Google Scholar 

  • Li D, Pfeiffer TW, Cornelius PL (2007) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581

    Article  Google Scholar 

  • Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X (2016) Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotech J 14:1956–1975

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Meth 25:402–408

    Article  CAS  Google Scholar 

  • Luo X, Bai X, Sun XL, Zhu D, Liu BH, Ji W (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. J Exp Bot 64:2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Brown-Guedira GL, Smith CM, Harvey TL, Gill BS (2003) Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci 43:644–650

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy MV, Dutta-Tawar U (2005) Introgression of Phytophthora blight disease resistance from Cajanus platycarpus into short duration pigeonpea [Cajanus cajan (L.) Millsp.]. Ind J Genet Plant Breed 65:261–263

    Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeonpea, C. cajan. Euphytica 149:161–167

    Article  CAS  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov I, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Singh S, Rathinam M, Nandiganti M, Ram Kumar N, Thangaraj A, Thimmegowda V, Krishnan V, Mishra V, Jain N, Rai V (2017) Comparative proteomic and nutritional composition analysis of independent transgenic pigeon pea seeds harboring cry1AcF and cry2Aa genes and their nontransgenic counterparts. J Agric Food Chem 65:1395–1400

    Article  CAS  PubMed  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) β-Glucosidases as detonators of plant chemical defense. Phytochem 69:1795–1813

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz N, Liu A, Kan L, Li MW, Lam HM (2017) Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci 18:328

    Article  CAS  PubMed Central  Google Scholar 

  • Oh SK, Baek KH, Seong E, Joung YH, Choi GJ, Park JM, Cho HS, Kim E, Lee S, Choi D (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parde VD, Sharma HC, Kachole MS (2012) Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer, Helicoverpa armigera. Am J Plant Sci 3:627–635

    Article  CAS  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazhamala L, Saxena RK, Singh VK, Sameer Kumar CV, Kumar V, Sinha P, Patel K, Obala J, Kaoneka SR, Tongoona P, Shimelis HA (2015) Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Front Plant Sci 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • The DESeq package. https://bioconductor.org/packages/release/bioc/vignettes/DESeq/inst/doc/DESeq.pdf Accessed 17 January 2019

  • Prischmann DA, Dashiell KE, Schneider DJ, Eubanks MW (2009) Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J Appl Entomol 133:10–20

    Article  Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A, Herraiz FJ, Rodríguez-Burruezo A, Soler S, Knapp S (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158

    Article  Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Gowri Neelima M, Shanmugam NB, Kumar ARV, Sarangi SK, Ananda Kumar P, Udayakumar M (2012) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol 136:675–687

    Article  CAS  Google Scholar 

  • Rani DS, Kumar SP, Venkatesh MN, Sri CNS, Kumar KA (2018) Bio efficacy of insecticides against gram pod borer, Helicoverpa armigera in Redgram. J Entomol Zool Stud 6:3173–3176

    Google Scholar 

  • Reddy MV, Sheila VK, Murthy AK, Padma N (1995) Mechanism of resistance to Aceria cajani in pigeonpea. Int J Trop Plant Dis 13:51–57

    Google Scholar 

  • Rey P, Tarrago L (2018) Physiological roles of plant methionine sulfoxide reductases in redox homeostasis and signaling. Antioxidants 7:114

    Article  CAS  PubMed Central  Google Scholar 

  • Rhoades DF, Cates RG (1976) Towards a general theory of plant antiherbivore chemistry. Biochemical interaction between plants and insects. Recent Adv Phytochem 10:168–713

    CAS  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore K (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genom 283:233–241

    Article  CAS  Google Scholar 

  • Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3:151–161

    Article  Google Scholar 

  • Singh S, Kumar NR, Maniraj R, Lakshmikanth R, Rao KYS, Muralimohan N, Arulprakash T, Karthik K, Shashibhushan NB, Vinutha T, Pattanayak D (2018) Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer. Helicoverpa armigera. Sci Rep 8:8820

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 10:e0122847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2010) Cytoscape 2.8: new features for data integration and network visualization. Bioinfo 27:431–432

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Prot 1:2019–2025

    Article  CAS  Google Scholar 

  • Sujana G, Sharma HC, Manohar Rao D (2008) Antixenosis and antibiosis components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Int J Trop Insect Sci 28:191–200

    Google Scholar 

  • Szczepaniec A, Widney SE, Bernal JS, Eubanks MD (2013) Higher expression of induced defenses in teosintes (Zea spp.) is correlated with greater resistance to fall armyworm, Spodoptera frugiperda. Entomol Exp Appl 146:242–251

    Article  Google Scholar 

  • Tang LL, Cai H, Ji W, Luo X, Wang ZY, Wu J (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambon AC, Gaj S, Ho I, Hanspers K, Vranizan K, Evelo CT, Conklin BR, Pico A, Salomonis N (2012) GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinfo 28:2209–2210

    Article  CAS  Google Scholar 

  • Zeier J (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ 36:2085–2103

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017) Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    Article  PubMed  Google Scholar 

  • Zhou YL, Xu JL, Zhou SC, Yu J, Xie XW, Xu MR (2009) Pyramiding Xa23 and Rxo1 for resistance to two bacterial diseases into an elite indica rice variety using molecular approaches. Mol Breed 23:279–287

    Article  CAS  Google Scholar 

  • Zhou YL, Uzokwe VNE, Zhang CH, Cheng LR, Wang L, Chen K (2011) Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot 30:637–644

    Article  CAS  Google Scholar 

  • Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–1498

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge financial supported by DBT-Indo Swiss Collaboration in Biotechnology (BT/IC-2/ISCB/Phase IV/01/Pigeon Pea/2015).

Author information

Authors and Affiliations

Authors

Contributions

R.S., and U.R., conceptualized the work and designed experiments. M.R. designed and conducted in planta challenging experiments. P.M. conducted the expression analyses. M.R., P.M., and A.M. analysed the data. R.S., and M.R. wrote the draft manuscript. R.S., U.R., and N.K.S. critically edited the manuscript. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Uma Rao or Rohini Sreevathsa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinam, M., Mishra, P., Mahato, A.K. et al. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol Biol 101, 163–182 (2019). https://doi.org/10.1007/s11103-019-00899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00899-7

Keywords