[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Spectral width reduction using apodized cascaded fiber Bragg grating for post-dispersion compensation in WDM optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper proposes a system that aims to reduce the spectral width, Δλ, of the optical signal at transmitter for WDM system over distance 100 km. Also, a chirped fiber Bragg grating (CFBG) at the receiver is used to compensate dispersion. The proposed system consists of four cascaded FBGs connected between light source and optical fiber. Many apodization functions are investigated to enhance the performance of the FBG in the proposed system, and Δλ is obtained at every stage and apodization function. The Q-factor and bit error rate (BER) are obtained at distances 30, 40 and 50 km. It is found that Cauchy apodization function is the best one that reduces the reflective spectral width, Δλ, and achieves a maximum Q-factor and minimum BER at distances 30, 40 and 50 km at the last stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

References

  1. Seimetz, M., Markus, N., Erwin, P.: Optical systems with high-order DPSK and star QAM modulation based on interferometric direct detection. J. Lightwave Technol. 25(6), 1515–1530 (2007)

    Article  Google Scholar 

  2. Ly, G., Kikuchi, T.: Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimate. J. Lightwave Technol. 24(1), 12–21 (2006)

    Article  Google Scholar 

  3. Payne, J.M., Shillue, W.P.: Photonic techniques for local oscillator generation and distribution in millimeter-wave radio astronomy. In: International Topical Meeting on Microwave Photonics, pp. 9–12. (2002).

  4. Trobs, M., Wessels, P., Fallnich, C.: Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna. Opt. Lett. 30(7), 789–791 (2005)

    Article  Google Scholar 

  5. Kaltenegger, A., Fridlund, M.: The Darwin mission: Search for extra-solar planets. Adv. Space Res. 36(6), 1114–1122 (2005)

    Article  Google Scholar 

  6. Petrou, V., Roudas, A.: Quadrature imbalance compensation for PDM QPSK coherent optical system. IEEE Photon. Technol. Lett. 21(24), 1876–1878 (2009)

    Article  Google Scholar 

  7. Grote, N., Venghaus, H.: Fiber OPTIC Communication Devices. Springer, Berlin (2017)

    Google Scholar 

  8. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, London (2012)

    Google Scholar 

  9. Keiser, G.: Signal Degradation in Optical Fiber. McGraw-Hill, New York (2000)

    Google Scholar 

  10. Venghaus, H.: Wavelength Filters in Fiber Optics. Springer, Berlin (2006)

    Book  Google Scholar 

  11. Ducournau, B., Szriftgiser, P., Peytavit, Z., Lampin, N.: Cascaded Brillouin fibre lasers coupled to unitravelling carrier photodiodes for narrow linewidth terahertz generation. Electron. Lett. 50(9), 690–692 (2014)

    Article  Google Scholar 

  12. Seo, D.-S., Ha, T., Yong-Yuk, W.: Spectral width reduction of a laser source by external phase noise compensation. Electron. Lett. 55(12), 703–704 (2019)

    Article  Google Scholar 

  13. Cliché, J.-F., Martin, A., Michel, T.: (2006) High-power and ultr-anarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise. In: Laser Source and System Technology for Defense and Security II, International Society for Optics and Photonics, vol. 6216. (2006)

  14. Junwei, F., Yanping, X., Xun, L., Wei-Ping, H.: Narrow spectral width FP lasers for high-speed short-reach applications. J. Lightwave Technol. 34(21), 4898–4906 (2016)

    Article  Google Scholar 

  15. Karthick, S., Singh, S., Prabu, S.S.M., Khan, S., Agarwal, V., Chitkariya, P., Saxena, M.K., Venkatesh, R., Palani, I.A.: Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber. Measurement 153, 107379 (2020)

    Article  Google Scholar 

  16. Tran, H., Guo, K., Morton, B.: Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Topics Quant. Electron. 26(2), 1–14 (2019)

    Article  Google Scholar 

  17. Huang, D., Tran, M.A., Guo, J., Peters, J., Komljenovic, T., Malik, A., Morton, P.A., Bowers, J.E.: High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 6, 745–752 (2019)

    Article  Google Scholar 

  18. Kashyap, R.: Fiber Bragg Gratings. Academic Press, London (1999)

    Google Scholar 

  19. Ashry, I., Elrashidi, A., Mahros, A., Alhaddad, M., Elleithy, K.: Investigating the performance of apodized fiber bragg gratings for sensing applications. In: Conference of the American Society for Engineering Education, Bridgeport, CT, USA, vol. 14, pp.1–5, 3–5. (2014)

  20. Mohammed, N., Ayman, W.E., Moustafa, H.A.: Distributed feedback fiber filter based on apodized fiber Bragg grating. Optoelectron. Adv. Mater. Rapid Commun. 9(9–10), 1093–1099 (2015)

    Google Scholar 

  21. Hanan, M.E.-G., Heba, A.F., Ahmed, A.E.-A., Moustafa, H.A.: Performance analysis & comparative study of uniform, apodized and pi-phase shifted FBGs for array of high performance temperature sensors Optoelectron. Adv. Mater. Rapid Commun. 9(9–10), 1251–1259 (2015)

    Google Scholar 

  22. Sayed, A.F., Barakat, T.M., Ali, I.A.: A novel dispersion compensation model using an efficient CFBG reflectors for WDM optical networks. Int. J. Microwave Opt. Technol. 12(3), 230–238 (2017)

    Google Scholar 

  23. Mohammed, N., Okasha, N.M., Aly, M.H.: A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18(5–6), 475–479 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf A. M. Khalaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, A.F., Mustafa, F.M., Khalaf, A.A.M. et al. Spectral width reduction using apodized cascaded fiber Bragg grating for post-dispersion compensation in WDM optical networks. Photon Netw Commun 41, 231–241 (2021). https://doi.org/10.1007/s11107-021-00926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00926-y

Keywords

Navigation