Abstract
In this paper, we focus on energy-efficient network planning (including traffic provisioning) along with optimal placement of virtualized elastic regenerators (VERs) for IP-over-elastic optical networks based on a static traffic profile, using a mixed integer linear programming-based optimization model. The proposed model judiciously exploits flexibility of IP core routers, sliceable bandwidth variable transponders (SBVTs) and VERs to accommodate the traffic demands with the minimum power consumption (PC). Optical layer traffic grooming allows to simultaneously originate/terminate multiple lightpaths of different capacities, data slots and maximum transparent reach by a single SBVT. The proposed model also allows to use all functionalities of VER, such as simultaneous regeneration, distance-adaptive transmission option selection, frequency slot merging to be used concurrently for the given static traffic profile. In addition, the proposed model includes lifetime awareness of Erbium-doped fiber amplifier (EDFA) to reduce EDFA failure and associated repairing cost in long run. Using the proposed model, we enhance the average EDFA lifetime by restricting average EDFA occupancy, represented by the ratio of the (average) number of lightpaths being amplified in an EDFA and the maximum possible number of lightpaths that can be amplified in it, even though in the process, the overall PC in network may increase, with reference to the scenario with no EDFA occupancy restriction. The variation in PC and average EDFA lifetime for different permissible (user-defined) average EDFA occupancy are studied. We exhaustively study performance of the model under different network conditions.
Similar content being viewed by others
Notes
In this paper, a fiber implies a bidirectional fiber (unless stated otherwise) representing two unidirectional fibers in opposite directions.
In this work, we do not consider the spectrum slot continuity and contiguity constraints to reduce computational complexity. The related constraints can be found in [9].
References
Bouras, I., Figueiredo, R., Poss, M., Zhou, F.: Minimizing energy and link utilization in ISP backbone networks with multi-path routing: a bi-level approach. Optim. Lett. 14(1), 209–227 (2020)
Dharmaweera, M.N., Parthiban, R., Sekercioglu, Y.A.: Toward a power-efficient backbone network: the state of research. IEEE Commun. Surv. Tutor. 17(1), 198–227 (2015)
Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)
Liu, S., Lu, W., Zhu, Z.: On the cross-layer orchestration to address IP router outages with cost-efficient multilayer restoration in IP-over-EONs. IEEE/OSA J. Opt. Commun. Netw. 10(1), A122–A132 (2018)
CISCO VNI forecast, 2016-2021, [Online]. Available at: https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-widget/forecast-widget/advanced.html.Last. Accessed Nov. 6 (2019)
Vizcaíno, J.L., Ye, Y., Monroy, I.T.: Energy efficiency analysis for flexible-grid OFDM-based optical networks. Comput. Netw. 56(10), 2400–2419 (2012)
Zhang, G., De Leenheer, M., Mukherjee, B.: Optical traffic grooming in OFDM-based elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(11), B17–B25 (2012)
Le, H.-C., Dang, N.T., Nguyen, N.D.: Impact of optical regeneration on dynamic elastic optical networks. In: IEEE International Conference on Advanced Technologies for Communications (ATC), pp. 11–15. IEEE (2017)
Biswas, P., Adhya, A.: Energy-efficient network planning and traffic provisioning in IP-over-elastic optical networks. Optik-Int. J. Light Electron Opt. 185, 1115–1133 (2019)
Jinno, M., Takara, H.: Elastic optical transponder and regenerator: toward energy and spectrum efficient optical transport networks. In: IEEE International Conference on Photonics in Switching (PS), pp. 1–3 (2012)
Jinno, M., Yonenaga, K., Takara, H., Shibahara, K., Yamanaka, S., Ono, T., Kawai, T., Tomizawa, M., Miyamoto, Y.: Demonstration of translucent elastic optical network based on virtualized elastic regenerator. In: National Fiber Optic Engineers Conference, OSA, Optical Society of America, pp. 1–3 (2012)
Zhao, Y., Chen, B., Zhang, J., Wang, X.: Energy efficiency with sliceable multi-flow transponders and elastic regenerators in survivable virtual optical networks. IEEE Trans. Commun. 64(6), 2539–2550 (2016)
Biswas, P., Dey, S.K., Adhya, A.: Auxiliary graph based energy-efficient dynamic connection grooming for elastic optical networks. In: IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–3 (2016)
Wiatr, P., Monti, P., Wosinska, L.: Power savings versus network performance in dynamically provisioned WDM networks. IEEE Commun. Mag. 50(5), 48–55 (2012)
Wiatr, P., Chen, J., Monti, P., Wosinska, L.: Energy efficiency versus reliability performance in optical backbone networks. IEEE/OSA J. Opt. Commun. Netw. 7(3), A482–A491 (2015)
Arrhenius, S.: Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Z. Phys. Chem. 4(1), 226–248 (1889)
Coffin Jr., L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Mech. Eng. 76, 931–950 (1954)
Manson, S.S.: Behavior of materials under conditions of thermal stress. NACA Report, p. 1170 (1954)
Chiaraviglio, L., Wiatr, P., Monti, P., Chen, J., Lorincz, J., Idzikowski, F., Listanti, M., Wosinska, L.: Is green networking beneficial in terms of device lifetime? IEEE Commun. Mag. 53(5), 232–240 (2015)
Wiatr, P., Yuan, D.: Reliability performance aware routing. In: IEEE International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 1–6 (2018)
Jinno, M., Takagi, T., Kiyokawa, K.: Minimal virtualized-elastic-regenerator placement and least congestion resources assignment for translucent elastic optical networks. In: Optical Fiber Communication Conference, IEEE/OSA, Optical Society of America (2015). Th3J-2
Fallahpour, A., Beyranvand, H., Nezamalhosseini, S.A., Salehi, J.A.: Energy efficient routing and spectrum assignment with regenerator placement in elastic optical networks. IEEE J. Lightwave Technol. 32(10), 2019–2027 (2014)
Klinkowski, M., Walkowiak, K.: On performance gains of flexible regeneration and modulation conversion in translucent elastic optical networks with superchannel transmission. IEEE J. Lightwave Technol. 34(23), 5485–5495 (2016)
Walkowiak, K., Klinkowski, M., Lechowicz, P.: Dynamic routing in spectrally spatially flexible optical networks with back-to-back regeneration. IEEE/OSA J. Opt. Commun. Netw. 10(5), 523–534 (2018)
Cavalcante, M.A., Pereira, H.A., Chaves, D.A., Almeida, R.C.: Evolutionary multiobjective strategy for regenerator placement in elastic optical networks. IEEE Trans. Commun. (2018)
Wiatr, P., Chen, J., Monti, P., Wosinska, L., Yuan, D.: Routing and wavelength assignment vs. EDFA reliability performance in optical backbone networks: an operational cost perspective. Opt. Switch. Netw. 31, 211–217 (2019)
Natalino, C., Chiaraviglio, L., Idzikowski, F., Wosinska, L., Monti, P.: Joint optimization of failure management costs, electricity costs, and operator revenue in optical core networks. IEEE Trans. Green Commun. Netw. 2(1), 291–304 (2018)
Natalino, C., Chiaraviglio, L., Idzikowski, F., Francês, C.R., Wosinska, L., Monti, P.: Optimal lifetime-aware operation of green optical backbone networks. IEEE J. Sel. Areas Commun. 34(12), 3915–3926 (2016)
Chiaraviglio, L., Amorosi, L., Dell’Olmo, P., Liu, W., Gutierrez, J.A., Cianfrani, A., Polverini, M., Le Rouzic, E., Listanti, M.: Lifetime-aware ISP networks: optimal formulation and solutions. IEEE/ACM Trans. Netw. 25(3), 1924–1937 (2017)
Biswas, P., Adhya, A., Akhtar, S., Gupta, J., Majhi, S.: EDFA active-sleep transition frequency and EDFA occupancy aware dynamic traffic provisioning for energyefficient IP-over-EON. In: IEEE International Conferences on Signal Processing and Communication Systems (ICSPCS), pp. 1–7 (2019)
Dey, S.K., Adhya, A.: IP-over-WDM network design methodology to improve efficiency in overall expenditure due to cost and energy consumption. IEEE/OSA J. Opt. Commun. Netw. 7(6), 563–577 (2015)
Heddeghem, W.V., Idzikowski, F., Vereecken, W., Colle, D., Pickavet, M., Demeester, P.: Power consumption modeling in optical multilayer networks. Photonic Netw. Commun. 24(2), 86–102 (2012)
Zhang, J., Zhao, Y., Yu, X., Zhang, J., Song, M., Ji, Y., Mukherjee, B.: Energy-efficient traffic grooming in sliceabletransponder—equipped IP-over-elastic optical networks [invited]. IEEE/OSA J. Opt. Commun. Netw. 7(1), A142–A152 (2015)
Papanikolaou, P., Soumplis, P., Manousakis, K., Papadimitriou, G., Ellinas, G., Christodoulopoulos, K., Varvarigos, E.: Minimizing energy and cost in fixed-grid and flex-grid networks. IEEE/OSA J. Opt. Commun. Netw. 7(4), 337–351 (2015)
Downs, R.: An optical amplifier pump laser reference design based on the AMC7820, Texas Instruments Application Report (2005)
Yang, G., Smith, G.M., Davis, M.K., Loeber, D.A., Hu, M., Zah, C.-E., Bhat, R.: Highly reliable high-power 980-nm pump laser. IEEE Photon. Technol. Lett. 16(11), 2403–2405 (2004)
Matuschek, N., Pliska, T., Troger, J., Mohrdiek, S., Schmidt, B.: Influence of thermal effects on the performance of high-power semiconductor lasers and pump-laser modules, semiconductor lasers and laser dynamics II. Int. Soc. Opt. Photon. 6184, 618402 (2006)
NKN brochure, [Online]. Available at http://nkn.gov.in/documents/NKN_Brochure.pdf
Acknowledgements
This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation (Unique Awardee No. MEITY-PHD-1183).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Biswas, P., Adhya, A. Energy-efficient, EDFA lifetime-aware network planning along with virtualized elastic regenerator placement for IP-over-EON. Photon Netw Commun 41, 119–135 (2021). https://doi.org/10.1007/s11107-020-00919-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-020-00919-3