Abstract
The impact of intercore crosstalk (ICXT) of weakly-coupled multicore fibers (MCFs) on the transmission performance of a Common Public Radio Interface (CPRI) signal in 5G networks fronthaul is studied by numerical simulation. The results show that forward error correction-supported CPRI signals have more tolerance to ICXT due to the higher targeted bit error rate (of 10−3). For a receiver power penalty of 1 dB, an improvement of the tolerance of CPRI signals to ICXT, due to the increase of the MCF skew by about 1 dB, is observed. However, for the crosstalk levels that lead to 1 dB power penalty, we have shown that, the system is unavailable with a high probability. The crosstalk level required for an acceptable outage probability is about 10 dB lower than the crosstalk level leading to 1 dB power penalty.
Similar content being viewed by others
References
China Mobile: C-RAN: the road towards green RAN. White Paper, version 2.5, https://pdfs.semanticscholar.org/eaa3/ca62c9d5653e4f2318aed9ddb8992a505d3c.pdf (2011). Accessed 9 January 2019
Pizzinat, A., Chanclou, P., Saliou, F., Diallo, T.: Things you should know about fronthaul. IEEE/OSA J. Lightw. Technol. 33(5), 1077–1083 (2015)
Shafi, M., Molisch, A., Smith, P., Haustein, T., Zhu, P., Silva, P., Tufvesson, F., Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)
Chanclou, P., Pizzinat, A., Clech, F., Reedeker, T., Lagadec, Y., Salliou F., Guyader, B., Guillo, L., Deniel, Q., Gosselin, S., Le, S., Diallo, T., Brenot, R., Lelarge, F., Marazzi, L., Parolari, O., Martinelli, M., Dull, S., Gebrewold, S., Hillerkuss, D., Leuthold, J., Gavioli, G., Galli, P.: Optical fiber solution for mobile fronthaul to achieve cloud radio access network. In: Future Network and Mobile Summit 2013, session 9e, Lisbon, Portugal (2013)
Galve, J.M., Gasulla, I., Sales, S., Capmany, J.: Reconfigurable radio access networks using multicore fibers. IEEE J. Quantum Electron. 52(1), 1–7 (2016)
Alimi, I., Teixeira, A., Monteiro, P.: Towards an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges and solutions. IEEE Commun. Surv. Tuts. 20(1), 708–769 (2018)
Dat, P., Kanno, A., Kawanishi, T.: Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wirel. Commun. 22(5), 67–75 (2015)
Common Public Radio Interface: CPRI specification V7.0. Standard Document Specification, vol. 1 (2015)
Pfeiffer, T.: Next generation mobile fronthaul and midhaul architectures. IEEE/OSA J. Opt. Commun. Netw. 7(11), B38–B45 (2015)
Telecommunications Standardization Sector of ITU-T: Transport network support of IMT-2020/5G. ITU-T Technical Report (2018). https://www.itu.int/md/T17-SG15-170619-TD-GEN-0078/en. Accessed 8 January 2019
Macho, A., Morant, M., Llorente, R.: Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J. Lightw. Technol. 34(20), 4819–4827 (2016)
Galve, J., Gasulla, I., Sales, S., Capmany, J.: Fronthaul design for radio access networks using multicore fibers. Waves Magaz. 7(1), 69–80 (2015)
Sakaguchi, J., Puttnam, B., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Imamura, K., Inaba, H., Mukasa, K., Sugizaki, R., Kobayashi, T., Watanabe, M.: 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. IEEE/OSA J. Lightw. Technol. 31(4), 554–562 (2013)
Puttnam, B., Luís, R., Mendinueta, J., Sakaguchi, J., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T.: High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber. Opt. Expr. 22(18), 21185–21191 (2014)
Feuer, M., Nelson, L., Zhou, X., Woodward, S., Isaac, R., Zhu, B., Taunay, T., Fishteyn, M., Fini, J., Yan, M.: Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Techn. Lett. 24(21), 1957–1960 (2012)
Igarashi, K., Tsuritani, T., Morita, I., Tsuchida, Y., Maeda, K., Tadakuma, M., Saito, T., Watanabe, K., Imamura, K., Sugizaki, R., Suzuki, M.: Super-Nyquist-WDM transmission over 7326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s km. Opt. Expr. 22(2), 1220–1228 (2014)
Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Design and fabrication of ultra-low crosstalk and low-loss multicore fiber. Opt. Expr. 19(17), 16576–16592 (2011)
Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., Matsuo, S.: Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Opt. Expr. 20(14), 15157–15170 (2012)
Cartaxo, A., Luís, R., Puttnam, B., Hayashi, T., Awaji, Y., Wada, N.: Dispersion impact on the crosstalk amplitude response of homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(17), 1858–1861 (2016)
Luís, R., Puttnam, B., Cartaxo, A., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N., Nakanishi, T., Hayashi, T., Sasaki, T.: Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 15(2), 441–447 (2016)
Alves, T., Cartaxo, A., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Intercore crosstalk in direct-detection homogeneous multicore fiber systems impaired by laser phase noise. Opt. Expr. 25(23), 29417–29431 (2017)
Alves, T., Cartaxo, A.: Intercore crosstalk in homogeneous multicore fibers: theoretical characterization of stochastic time evolution. IEEE/OSA J. Lightw. Technol. 35(21), 4613–4623 (2017)
Alves, T., Cartaxo, A.: Characterization of the stochastic time evolution of short-term average intercore crosstalk in multicore fibers with multiple interfering cores. Opt. Expr. 26(4), 4605–4620 (2018)
Koshiba, M., Saitoh, K., Takenaga, K., Matsuo, S.: Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photon. J. 4(5), 1987–1995 (2012)
Cartaxo, A., Alves, T.: Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 35(12), 2398–2408 (2017)
Soeiro, R., Alves, T., Cartaxo, A.: Dual polarization discrete changes model of inter-core crosstalk in multi-core fibers. IEEE Photon. Technol. Lett. 29(16), 1395–1398 (2017)
Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., Morioka, T.: Wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(1), 27–30 (2016)
Sano, A., Takara, H., Kobayashi, T., Miyamoto, Y.: Crosstalk-managed high capacity long haul multicore fibre transmission with propagation-direction interleaving. IEEE/OSA J. Lightw. Technol. 32(16), 2771–2779 (2014)
Takenaga, K., Arakawa, Y., Tanigawa, S., Guan, N., Matsuo, S., Saitoh, K., Koshiba, M.: Reduction of crosstalk by trench-assisted multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2011, Paper OWJ4, Los Angeles, USA, (2011)
Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. IEEE/OSA J. Lightw. Technol. 30(4), 583–589 (2012)
Puttnam, B., Luís, R., Eriksson, T., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N.: Impact of inter-core crosstalk on the transmission distance of QAM formats in multi-core fibers. IEEE Photon. J. 8(5), 936–944 (2016)
Hayashi, T., Sasaki, T., Sasaoka, E.: Behavior of inter-core crosstalk as a noise and its effect on Q-factor in multi-core fiber. IEICE Trans. Commun. E97-B(5), 936–944 (2014)
Shimakawa, O., Shiazaki, M., Sano, T., Inone, A.: Pluggable fan-out realizing physical-contact and low coupling loss for multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2013, Paper OM3I.2, Anaheim, USA (2013)
Jung, Y., Hayes, J., Alam, S., Richardson, D.: Multicore fibre fan-in/fan-out device using fibre optic collimators. In: Proc. European Conference on Optical Communication, ECOC 2017, Paper P1.SC1.17, Gothenburg, Sweden (2017)
Agrawal, G.P.: Fiber-optic communication systems, 4th edn. John Wiley & Sons, New Jersey (2010)
Rebola, J., Cartaxo, A.: Gaussian approximation for performance assessment of optically preamplified receivers with arbitrary optical and electrical filters. IET Optoelectron. 148(3), 135–142 (2001)
Carlson, A., Crilly, P.: Communication systems: an introduction to signals and noise in electrical communication, 5th edn. McGraw-Hill, New York (2010)
Parolari, P., Marazzi, L., Brunero, M., Martinelli, M., Maho, A., Barbet, S., Lelarge, F., Brenot, R., Gavioli, G., Simon, G., Saliou, F., Deniel, Q., Chanclou, P.: Operation of RSOA WDM PON self-seeded transmitter over more 50 km of SSMF up to 10 Gb/s. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2014, Paper W3G.4, San Francisco, USA (2014)
Pinheiro, B., Rebola, J., Cartaxo, A.: Impact of inter-core crosstalk on the performance of multi-core fibers-based SDM systems with coherent detection. In: Proc. International Conference on Photonics, Optics and Laser Technology, Photooptics 2018, Funchal, Portugal, 74–81 (2018)
Rademacher, G., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Crosstalk dynamics in multi-core fibers. Opt. Expr. 25(10), 12020–12028 (2017)
Cvijetic, N., Wilson, S., Qian, D.: System outage probability due to PMD in high-speed optical OFDM transmission. IEEE/OSA J. Lightw. Technol. 26(14), 2118–2127 (2008)
Winzer, P., Foschini, G.: MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Expr. 19(17), 16680–16696 (2011)
Acknowledgements
This work was supported in part by Fundação para a Ciência e a Tecnologia (FCT) from Portugal under the project of Instituto de Telecomunicações AMEN-ID/EEA/50008/2013.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rebola, J.L., Cartaxo, A.V.T. & Marques, A.S. 10 Gbps CPRI signals transmission impaired by intercore crosstalk in 5G network fronthauls with multicore fibers. Photon Netw Commun 37, 409–420 (2019). https://doi.org/10.1007/s11107-019-00828-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-019-00828-0