[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Loss estimation and control mechanism in bufferless optical packet-switched networks based on multilayer perceptron

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANNs) are well-known estimators for the output of broad range of complex systems and functions. In this paper, a common ANN architecture called multilayer perceptron (MLP) is used as a fast optical packet loss rate (OPLR) estimator for bufferless optical packet-switched (OPS) networks. Considering average loads at the ingress switches of an OPS network, the proposed estimator estimates total OPLR as well as ingress OPLRs (the OPLR of optical packets sent from individual ingress switches). Moreover, a traffic policing algorithm called OPLRC is proposed to control ingress OPLRs in bufferless slotted OPS networks with asymmetric loads. OPLRC is a centralized greedy algorithm which uses estimated ingress OPLRs of a trained MLP to tag some optical packets at the ingress switches as eligible for drop at the core switches in case of contention. This will control ingress OPLRs of un-tagged optical packets within the specified limits while giving some chance for tagged optical packets to reach their destinations. Eventually, the accuracy of the proposed estimator along with the performance of the proposed algorithm is evaluated by extensive simulations. In terms of the algorithm, the results show that OPLRC is capable of controlling ingress OPLRs of un-tagged optical packets with an acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yousefi, S., Bagherzadeh, J., Asghari, M.: An artificial neural network approach for loss estimation in bufferless optical packet switched networks. In: 2017 IEEE International Conference on Communications (ICC), IEEE, pp. 1–6 (2017). https://doi.org/10.1109/ICC.2017.7996816

  2. Jue, J.P., Yang, W.-H., Kim, Y.-C., Zhang, Q.: Optical packet and burst switched networks: a review. IET Commun. 3(3), 334–352 (2009)

    Article  Google Scholar 

  3. Papazoglou, C., Papadimitriou, G., Pomportsis, A.: Design alternatives for optical-packet-interconnection network architectures [invited]. J. Opt. Netw. 3(11), 810–825 (2004)

    Article  Google Scholar 

  4. Kharroubi, F., Chen, L., Yu, J.: Approaches and controllers to solving the contention problem for packet switching networks: a survey, In: Wang, Y., Xiaoming, Z. (eds.) Internet of Things, pp. 172–182. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32427-7_24

  5. Rahbar, A.G.: Analysis of optical packet loss rate under asymmetric traffic distribution in multi-fiber synchronous ops switches. Opt. Int. J. Light Electron Opt. 124(9), 769–772 (2013)

    Article  Google Scholar 

  6. Rahbar, A.G.P.: Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted ops networks. Opt. Commun. 282(5), 798–808 (2009)

    Article  Google Scholar 

  7. Maier, G., Pattavina, A.: Deflection routing in IP optical networks. Telecommun. Syst. 52(1), 51–60 (2013)

    Article  Google Scholar 

  8. Wong, E.W., Andrew, L.L., Cui, T., Moran, B., Zalesky, A., Tucker, R.S., Zukerman, M.: Towards a bufferless optical internet. J. Lightwave Technol. 27(14), 2817–2833 (2009)

    Article  Google Scholar 

  9. Rahbar, A.G.P., Yang, O.W.: Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey. IEEE Commun. Surv. Tutor. 10(4), 94–107 (2008)

    Article  Google Scholar 

  10. Vishwanath, A., Sivaraman, V., Thottan, M., Dovrolis, C.: Enabling a bufferless core optical network using edge-to-edge packet-level fec. IEEE Trans. Commun. 61(2), 690–699 (2013)

    Article  Google Scholar 

  11. Eramo, V., Listanti, M., Germoni, A.: Cost evaluation of optical packet switches equipped with limited-range and full-range converters for contention resolution. J. Lightwave Technol. 26(4), 390–407 (2008)

    Article  Google Scholar 

  12. Asghari, M., Rahbar, A.Ghaffarpour: Contention avoidance in bufferless slotted optical packet switched networks with egress switch coordination. Opt. Switch. Netw. 18, 104–119 (2015). https://doi.org/10.1016/j.osn.2015.05.001

    Article  Google Scholar 

  13. Asghari, M., Rahbar, A.Ghaffarpour: Contentionless transmission in buffer-less slotted optical packet switched networks. Opt. Fiber Technol. 30, 134–146 (2016). https://doi.org/10.1016/j.yofte.2016.04.013

    Article  Google Scholar 

  14. Basheer, I., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

    Article  Google Scholar 

  15. Haykin, S.S., Haykin, S.S., Haykin, S.S., Haykin, S.S.: Neural Networks and Learning Machines, vol. 3. Pearson Education, Upper Saddle River (2009)

    MATH  Google Scholar 

  16. Chabaa, S., Zeroual, A., Antari, J.: Identification and prediction of internet traffic using artificial neural networks. J. Intell. Learn. Syst. Appl. 2(03), 147 (2010)

    Google Scholar 

  17. Øverby, H.: Traffic models for slotted optical packet switched networks. Photon. Netw. Commun. 13(2), 183–194 (2007)

    Article  Google Scholar 

  18. Eramo, V., Listanti, M., Donato, M.D.: Performance evaluation of a bufferless optical packet switch with limited-range wavelength converters. IEEE Photon. Technol. Lett. 16(2), 644–646 (2004)

    Article  Google Scholar 

  19. Bianzino, A.P., Chaudet, C., Rossi, D., Rougier, J.-L.: A survey of green networking research. IEEE Commun. Surv. Tutor. 14(1), 3–20 (2012)

    Article  Google Scholar 

  20. Venkatesh, T.: Estimation, classification, and analysis of losses in optical burst switching networks. Ph.D. thesis, A thesis submitted for the award of the degree of Doctor of philosophy (2009)

  21. Heegaard, P.E., Sandmann, W.: Efficient estimation of loss rates in optical packet switched networks with wavelength conversion. In: Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on, IEEE, pp. 59–59 (2007)

  22. Ribeiro, M.R., O’Mahony, M.J.: Improvements on performance of photonic packet switching nodes by priority assignment and buffer sharing. In: Communications, 2000. ICC 2000. 2000 IEEE International Conference on, IEEE, vol. 3, pp. 1738–1742 (2000)

  23. Akar, N., Karasan, E., Raffaelli, C.: Fixed point analysis of limited range share per node wavelength conversion in asynchronous optical packet switching systems. Photon. Netw. Commun. 18(2), 255–263 (2009)

    Article  Google Scholar 

  24. Eramo, V., Miucci, E., Cianfrani, A., Germoni, A., Listanti, M.: An analytical model evaluating the performance of small size asynchronous optical packet switches. In: Transparent Optical Networks (ICTON), 2011 13th International Conference on, IEEE, pp. 1–4 (2011)

  25. Binh, L.N., Chong, H.C.: A neural-network contention controller for packet switching networks. IEEE Trans. Neural Netw. 6(6), 1402–1410 (1995)

    Article  Google Scholar 

  26. Li, F., Sun, J., Zukerman, M., Liu, Z., Xu, Q., Chan, S., Chen, G., Ko, K.-T.: A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes. J. Netw. Comput. Appl. 41, 274–299 (2014)

    Article  Google Scholar 

  27. Bazmi, P., Keshtgary, M.: A neural network based congestion control algorithm for content-centric networks. J. Adv. Comput. Sci. Technol. 3(2), 214–220 (2014)

    Article  Google Scholar 

  28. Mehrvar, H.R., Soleymani, M.R.: Packet loss rate prediction using a universal indicator of traffic. In: Communications, 2001. ICC 2001. IEEE International Conference on, IEEE, vol. 3, pp. 647–653 (2001)

  29. Atiya, A.F., Yoo, S.G., Chong, K.T., Kim, H.: Packet loss rate prediction using the sparse basis prediction model. IEEE Trans. Neural Netw. 18(3), 950–954 (2007)

    Article  Google Scholar 

  30. Dong, Z., Khan, F., Sui, Q., Zhong, K., Lu, C., Lau, A.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34(2), 525–543 (2015)

    Article  Google Scholar 

  31. de Arajo, D.R., Martins-Filho, J.F., Bastos-Filho, C.J.: Using multi-layer perceptron and complex network metrics to estimate the performance of optical networks. In: Microwave & Optoelectronics Conference (IMOC), 2013 SBMO/IEEE MTT-S International, IEEE, pp. 1–5 (2013)

  32. de Arajo, D.R., Bastos-filho, C.J., Martins-Filho, J.F.: Methodology to obtain a fast and accurate estimator for blocking probability of optical networks. IEEE/OSA J. Opt. Commun. Netw. 7(5), 380–391 (2015)

    Article  Google Scholar 

  33. Arajo, D.R., Bastos-Filho, C.J., Martins-Filho, J.F.: Artificial neural networks to estimate blocking probability of transparent optical networks: a robustness study for different networks. In: Transparent Optical Networks (ICTON), 2015 17th International Conference on, IEEE, pp. 1–4 (2015)

  34. Arajo, D.R., Bastos-Filho, C.J., Martins-Filho, J.F.: Analyzing surrogate models to assess Blocking Probability of optical networks. In: Microwave and Optoelectronics Conference (IMOC), 2015 SBMO/IEEE MTT-S International, IEEE, pp. 1–5 (2015)

  35. Yao, S., Mukherjee, B., Yoo, S.B., Dixit, S.: A unified study of contention-resolution schemes in optical packet-switched networks. J. Lightwave Technol. 21(3), 672–683 (2003)

    Article  Google Scholar 

  36. Krkov, V.: Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 5(3), 501–506 (1992)

    Article  Google Scholar 

  37. Opnet university program. http://www.opnet.com/university_program/research_with_opnet/. Accessed Dec 2016

  38. Gebali, F.: Analysis of Computer Networks. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  39. Caida. packet size distribution comparison between internet links in 1998 and 2008. http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml. Accessed Dec 2016

  40. Khattab, T., Mohamed, A., Kaheel, A., Alnuweiri, H.: Optical packet switching with packet aggregation. In: IEEE International Conference on Software, Telecommunications, and Computer Networks (SOFTCOM) (2002)

  41. Matlab version 8.5.0. (r2015a). http://www.mathworks.com/products/matlab/. Accessed Dec 2016

  42. Moseng, T.K., Øverby, H., Stol, N.: Merit based scheduling in asynchronous bufferless optical packet switched networks. In: Proceedings of Norsk Informatikk Konferanse (NIK), Stavanger, Norway, Citeseer (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Bagherzadeh.

Additional information

A preliminary version of this work appears in the proceedings of 2017 IEEE International Conference on Communications (ICC) [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M., Bagherzadeh, J. & Yousefi, S. Loss estimation and control mechanism in bufferless optical packet-switched networks based on multilayer perceptron. Photon Netw Commun 35, 274–286 (2018). https://doi.org/10.1007/s11107-017-0743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0743-7

Keywords

Navigation