Abstract
The fast frequency hopping optical CDMA with prime-hop codes (PHCs) provides great flexibility and increases spectral efficiency in comparison with direct sequence methods. Applying the spectrum-sliced incoherent source will further reduce the system cost. However, the dispersion in such an incoherent system becomes a limiting factor to the bit error rate. A novel adaptive PHC scheme to such systems is proposed in this article. The main impact of the scheme is to reduce the power loss and the bit error rate (BER) degradation due to higher-order dispersion. The impact of inherit beat noise in spectrum slicing systems is also alleviated. Performance comparisons between the adaptive PHC and original PHC schemes indicate that the former is more suitable for use in the considered incoherent system, accommodating up to 17% more users for a given BER. The proposed adaptive method can be universally applied to mitigate dispersion effects in the similar 2D OCDMA systems.
Similar content being viewed by others
References
Salehi J.A.: Code division multiple-access techniques in optical fibre networks I fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)
Azizoglu M., Salehi J.A., Li Y.: Optical CDMA via temporal codes. IEEE Trans. Commun. 40, 1162–1170 (1992)
Zaccarin D., Kavehrad M.: An optical CDMA system based on spectral encoding of LED. IEEE Photon. Technol. Lett. 5, 479–482 (1993)
Fathallah H., Rusch L.A., LaRochelle S.: Passive optical fast frequency-hop CDMA communications system. J. Lightwave Technol. 17, 397–405 (1999)
Tancevski L., Andonovic I.: Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. J. Lightwave Technol. 14, 2636–2647 (1996)
Prucnal P., Santoro M., Fan T.: Spread spectrum fiber-optic local area network using optical processing. J. Lightwave. Technol. 4, 547–554 (1986)
Yang G.C., Kwong W.C.: Performance analysis of optical CDMA with prime codes. Electron. Lett. 31, 569–570 (1995)
Tancevski L., Andonovic I.: Wavelength hopping/time spreading code division multiple accesssystems. Electron. Lett. 30, 1388–1390 (1994)
Papannareddy R., Weiner A.M.: Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems. IEEE Photon. Technol. Lett. 11, 1683–1685 (1999)
Sardesai H.P., Chang C.C., Weiner A.M.: A femtosecond code-division multiple-access communication system test bed. J. Lightwave Technol. 16, 1953–1964 (1998)
Smith E.D.J., Gough P.T., Taylor D.P.: Noise limits of optical spectral-encoding CDMA systems. Electron. Lett. 31, 1469–1470 (1995)
Wen J.H., Lin J.Y., Liu C.Y.: Modified prime-hop codes for optical CDMA systems. IEE Proc. Commun. 150, 404–408 (2003)
Lin J.-Y., Jhou J.-S., Liu C.-Y., Wen J.-H.: Performance analysis of modified prime-hop codes for OCDMA systems with multiuser detectors. Opt. Fiber Technol. 13, 108–116 (2007)
Sun, S., Leeson, M.S.: Transmission performance of spectrum-sliced incoherent 2D FFH-OCDMA systems using modified prime-hop codes. In: International Conference on Communications and Mobile Computing, Kun Ming, China, 531–535 (2009)
Sun S.B., Leeson M.S.: Spectrum-sliced wavelength division multiplexed systems with optical preamplifiers. Fiber Integr. Opt. 28, 417–429 (2009)
Salehi J.A., Brackett C.A.: Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)
Boffi, P., Piccinin, D., Parolari, P., Aldeghi, R., Martinelli M.: Programmable fiber Bragg gratings for spectral CDMA. In: Lasers and Electro-Optics, 2000. (CLEO 2000). Conference on, 578–579 (2000)
Kashyap R.: Fiber Bragg Gratings 2nd ed. Elsevier/Academic Press, Amsterdam (2010)
Gruer-Nielsen L., Knudsen S.N., Edvold B., Veng T., Magnussen D., Larsen C.C., Damsgaard H.: Dispersion compensating fibers. Opt. Fiber Technol. 6, 164–180 (2000)
Dabarsyah B., Goh C., Khijwania S., Set S., Katoh K., Kikuchi K.: Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings. IEEE Photon. Technol. Lett. 15, 416–418 (2003)
Agrawal G.P.: Fiber-Optic Communication Systems. Wiley- Interscience, New York (2002)
Royset, A., Laming, R.: Demonstration of standard fiber transmission limited by third-order dispersion. Optical Fiber Communications, OFC’96, pp. 253–254 (1996)
Matsumoto S., Takabayashi M., Yoshiara K., Sugihara T., Miyazaki T., Kubota F.: Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions. IEEE Photon. Technol. Lett. 16, 1095–1097 (2004)
Reyes P., Litchinitser N., Sumetsky M., Westbrook P.: 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photon. Technol. Lett. 17, 831–833 (2005)
Lee Y.J., Bae J., Lee K., Jeong J.M., Lee S.B.: Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating. IEEE Photon. Technol. Lett. 19, 762–764 (2007)
Forghieri F., Tkach R.W., Chraplyvy A.R., Marcuse D.: Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photon. Technol. Lett. 6, 754–756 (1994)
Lee J.S., Chung Y.C., DiGiovanni D.J.: Spectrum-sliced amplifier light source for multichannel WDM applications. IEEE Photon. Technol. Lett. 5, 1458–1461 (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, S., Leeson, M.S. Higher-order dispersion mitigation for spectrum-sliced FFH-OCDMA using adaptive prime-hop codes. Photon Netw Commun 21, 107–116 (2011). https://doi.org/10.1007/s11107-010-0285-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-010-0285-8